The aquatic risk assessment for nickel (Ni) in the European Union is based on chronic species sensitivity distributions and the use of bioavailability models. To test whether a bioavailability-based safe threshold of Ni (the hazardous concentration for 5% of species [HC5]) is protective for aquatic communities, microcosms were exposed to 5 stable Ni treatments (6-96 mg/L) and a control for 4 mo to assess bioaccumulation and effects on phytoplankton, periphyton, zooplankton, and snails. Concentrations of Ni in the periphyton, macrophytes, and snails measured at the end of the exposure period increased in a dose-dependent manner but did not indicate biomagnification. Abundance of phytoplankton and snails decreased in 48 mg Ni/L and 96 mg Ni/L treatments, which may have indirectly affected the abundance of zooplankton and periphyton. Exposure up to 24 mg Ni/L had no adverse effects on algae and zooplankton, whereas the rate of population decline of the snails at 24 mg Ni/L was significantly higher than in the controls. Therefore, the study-specific overall no-observed-adverse-effect concentration (NOAEC) is 12 mg Ni/L. This NOAEC is approximately twice the HC5 derived from a chronic species sensitivity distribution considering the specific water chemistry of the microcosm by means of bioavailability models. Thus, the present study provides support to the protectiveness of the bioavailability-normalized HC5 for freshwater communities.
A field experiment was performed in four freshwater systems to assess the effects of Ni on the benthic macroinvertebrate communities. Sediments were collected from the sites (in Belgium, Germany, and Italy), spiked with Ni, and returned to the respective field sites. The colonization process of the benthic communities was monitored during a nine-month period. Nickel effect on the benthos was also assessed in the context of equilibrium partitioning model based on acid volatile sulfides (AVS) and simultaneously extracted metals (SEM). Benthic communities were not affected at (SEM - AVS) ≤ 0.4 µmol/g, (SEM - AVS)/fraction of organic carbon (f(OC)) < 21 µmol/g organic carbon (OC). Sediments with (SEM - AVS) > 2 µmol/g, (SEM - AVS)/f(OC) > 700 µmol/g OC resulted in clear adverse effects. Uncertainty about the presence and absence of Ni toxicity occurred at (SEM - AVS) and (SEM - AVS)/f(OC) between 0.4 to 2 µmol/g and 21 to 700 µmol/g OC, respectively. The results of our study also indicate that when applying the SEM:AVS concept for predicting metal toxicity in the field study, stressors other than sediment characteristics (e.g., sorption capacity), such as environmental disturbances, should be considered, and the results should be carefully interpreted.
A field-based evaluation of the biological effects of potential nickel (Ni) exposures was conducted using monitoring data for benthic macroinvertebrates and water chemistry parameters for streams in England and Wales. Observed benthic community metrics were compared to expected community metrics under reference conditions using RIVPACS III+ software. In order to evaluate relationships between Ni concentrations and benthic community metrics, bioavailable Ni concentrations were also calculated for each site. A limiting effect from Ni on the 90th percentile of the maximum achievable ecological quality was derived at "bioavailable Ni" exposures of 10.3 μg l(-1). As snails have been identified as particularly sensitive to nickel exposure, snail abundance in the field in response to nickel exposure, relative to reference conditions, was also analysed. A "low effects" threshold for snail abundance based on an average of spring and autumn data was derived as 3.9 μg l(-1) bioavailable Ni. There was no apparent effect of Ni exposure on the abundance of Ephemeroptera (mayflies), Plecoptera (stoneflies) or Tricoptera (caddisflies) when expressed relative to a reference condition within the range of "bioavailable Ni" exposures observed within the dataset. Nickel exposure concentrations co-vary with the concentrations of other stressors in the dataset, and high concentrations of Ni are also associated with elevated concentrations of other contaminants.
There has been an increased emphasis on incorporating bioavailability-based approaches into freshwater guideline value derivations for metals in the Australian and New Zealand water quality guidelines. Four bioavailability models were compared: the existing European biotic ligand model (European Union BLM) and a softwater BLM, together with 2 newly developed multiple linear regressions (MLRs)-a trophic level-specific MLR and a pooled MLR. Each of the 4 models was used to normalize a nickel ecotoxicity dataset (combined tropical and temperate data) to an index condition of pH 7.5, 6 mg Ca/L, 4 mg Mg/L, (i.e., approximately 30 mg CaCO 3 /L hardness), and 0.5 mg DOC/L. The trophic level-specific MLR outperformed the other 3 models, with 79% of the predicted 10% effect concentration (EC10) values within a factor of 2 of the observed EC10 values. All 4 models gave similar normalized species sensitivity distributions and similar estimates of protective concentrations (PCs). Based on the index condition water chemistry proposed as the basis of the national guideline value, a protective concentration for 95% of species (PC95) of 3 µg Ni/L was derived. This guideline value can be adjusted up and down to account for site-specific water chemistries. Predictions of PC95 values for 20 different typical water chemistries for Australia and New Zealand varied by >40-fold, which confirmed that correction for nickel bioavailability is critical for the derivation of site-specific guideline values.
We studied biotic ligand model (BLM) predictions of the toxicity of nickel (Ni) and zinc (Zn) in natural waters from Illinois and Minnesota, USA, which had combinations of pH, hardness, and dissolved organic carbon (DOC) more extreme than 99.7% of waters in a nationwide database. We conducted 7‐day chronic tests with Ceriodaphnia dubia and 96‐hour acute and 14‐day chronic tests with Neocloeon triangulifer and estimated median lethal concentrations and 20% effect concentrations for both species. Toxicity of Ni and Zn to both species differed among test waters by factors from 8 (Zn tests with C. dubia) to 35 (Zn tests with N. triangulifer). For both species and metals, tests with Minnesota waters (low pH and hardness, high DOC) showed lower toxicity than Illinois waters (high pH and high hardness, low DOC). Recalibration of the Ni BLM to be more responsive to pH‐related changes improved predictions of Ni toxicity, especially for C. dubia. For the Zn BLM, we compared several input data scenarios, which generally had minor effects on model performance scores (MPS). A scenario that included inputs of modeled dissolved inorganic carbon and measured Al and Fe(III) produced the highest MPS values for tests with both C. dubia and N. triangulifer. Overall, the BLM framework successfully modeled variation in toxicity for both Zn and Ni across wide ranges of water chemistry in tests with both standard and novel test organisms. Environ Toxicol Chem 2021;40:3049–3062. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.