We examine the behaviour of the pseudo-marginal random walk Metropolis algorithm, where evaluations of the target density for the accept/reject probability are estimated rather than computed precisely. Under relatively general conditions on the target distribution, we obtain limiting formulae for the acceptance rate and for the expected squared jump distance, as the dimension of the target approaches infinity, under the assumption that the noise in the estimate of the log-target is additive and is independent of the position. For targets with independent and identically distributed components, we also obtain a limiting diffusion for the first component.We then consider the overall efficiency of the algorithm, in terms of both speed of mixing and computational time. Assuming the additive noise is Gaussian and is inversely proportional to the number of unbiased estimates that are used, we prove that the algorithm is optimally efficient when the variance of the noise is approximately 3.283 and the acceptance rate is approximately 7.001%. We also find that the optimal scaling is insensitive to the noise and that the optimal variance of the noise is insensitive to the scaling. The theory is illustrated with a simulation study using the particle marginal random walk Metropolis.
Summary:We consider inference for the reaction rates in discretely observed networks such as those found in models for systems biology, population ecology and epidemics. Most such networks are neither slow enough nor small enough for inference via the true state-dependent Markov jump process to be feasible. Typically, inference is conducted by approximating the dynamics through an ordinary differential equation (ODE), or a stochastic differential equation (SDE). The former ignores the stochasticity in the true model, and can lead to inaccurate inferences. The latter is more accurate but is harder to implement as the transition density of the SDE model is generally unknown. The Linear Noise Approximation (LNA) arises from a first order Taylor expansion of the approximating SDE about a deterministic solution and can be viewed as a compromise between the ODE and SDE models. It is a stochastic model, but discrete time transition probabilities for the LNA are available through the solution of a series of ordinary differential equations. We describe how a restarting LNA can be efficiently used to perform inference for a general class of reaction networks; evaluate the accuracy of such an approach; and show how and when this approach is either statistically or computationally more efficient than ODE or SDE methods. We apply the LNA to analyse Google Flu Trends data from the North and South Islands of New Zealand, and are able to obtain more accurate short-term forecasts of new flu cases than another recently proposed method, although at a greater computational cost.
Recently-proposed particle MCMC methods provide a flexible way of performing Bayesian inference for parameters governing stochastic kinetic models defined as Markov (jump) processes (MJPs). Each iteration of the scheme requires an estimate of the marginal likelihood calculated from the output of a sequential Monte Carlo scheme (also known as a particle filter). Consequently, the method can be extremely computationally intensive. We therefore aim to avoid most instances of the expensive likelihood calculation through use of a fast approximation. We consider two approximations: the chemical Langevin equation diffusion approximation (CLE) and the linear noise approximation (LNA). Either an estimate of the marginal likelihood under the CLE, or the tractable marginal likelihood under the LNA can be used to calculate a first step acceptance probability. Only if a proposal is accepted under the approximation do we then run a sequential Monte Carlo scheme to compute an estimate of the marginal likelihood under the true MJP and construct a second stage acceptance probability that permits exact (simulation based) inference for the MJP. We therefore avoid expensive calculations for proposals that are likely to be rejected. We illustrate the method by considering inference for parameters governing a Lotka-Volterra system, a model of gene expression and a simple epidemic process.
A Markov-modulated Poisson process is a Poisson process whose intensity varies according to a Markov process. We present a novel technique for simulating from the exact distribution of a continuous time Markov chain over an interval given the start and end states and the infinitesimal generator, and we use this to create a Gibbs sampler which samples from the exact distribution of the hidden Markov chain in a Markov-modulated Poisson process. We apply the Gibbs sampler to modelling the occurrence of a rare DNA motif (the Chi site) and to inferring regions of the genome with evidence of high or low intensities for occurrences of this site. Copyright 2006 Royal Statistical Society.
We provide a clarification of the description of Langevin diffusions on Riemannian manifolds and of the measure underlying the invariant density. As a result we propose a new position-dependent Metropolis-adjusted Langevin algorithm (MALA) based upon a Langevin diffusion in $\mathbb{R}^d$ which has the required invariant density with respect to Lebesgue measure. We show that our diffusion and the diffusion upon which a previously-proposed position-dependent MALA is based are equivalent in some cases but are distinct in general. A simulation study illustrates the gain in efficiency provided by the new position-dependent MALA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.