Around one-third of people develop depression following ischaemic stroke, yet the underlying mechanisms are poorly understood. Post-stroke depression has been linked to frontal infarcts, mainly lesions in the left dorsolateral prefrontal cortex (DLPFC). But depression is a network disorder that cannot be fully characterised through lesion-symptom mapping. Researchers of depression in non-stroke populations have successfully tapped into the cognitive control network (CCN) using the bilateral DLPFC as a seed, and found that CCN resting-state connectivity is reduced in even mildly depressed subjects, compared to healthy controls. Hence, we aimed to investigate the association between post-stroke depressive features and the CCN resting-state connectivity in a stroke population. We analysed DLPFC resting-state connectivity in 64 stroke participants, 20 of whom showed depressive features assessed with the Patient Health Questionnaire (PHQ-9) at 3 months after stroke. We directly compared groups showing symptoms of depression with those who did not, and performed a regression with PHQ-9 scores in all participants, controlling for age, gender, lesion volume and stroke severity. Post-stroke depression was associated with lower connectivity between the left DLPFC and the right supramarginal gyrus (SMG) in both group and regression analyses. Neither the seed nor the results overlapped with stroke lesions. These findings confirm an important role of the left DLPFC in post-stroke depression, but now show that large-scale network disruptions following stroke associated with depressive features occur without lesions in the DLPFC.
Introduction: Compared to healthy individuals, stroke patients have five times the rate of dementia diagnosis within three years. Aerobic exercise may induce neuroprotective mechanisms that help to preserve, and even increase, brain volume and cognition. We seek to determine whether aerobic fitness training helps to protect brain volume and cognitive function after stroke compared to an active, non-aerobic control. Methods: In this Phase IIb, single blind, randomised controlled trial, 100 ischaemic stroke participants, recruited at two months post-stroke, will be randomly allocated to either the intervention (aerobic and strength exercise) or active control (stretching and balance training). Participants will attend one-hour, individualised exercise sessions, three days-per-week for eight weeks. Assessments at two months (baseline), four months (post-intervention), and one year (follow-up) post-stroke will measure brain volume, cognition, mood, cardiorespiratory fitness, physical activity, blood pressure and blood biomarkers. Study outcome: Our primary outcome measure is hippocampal volume at four months after stroke. We hypothesise that participants who undertake the prescribed intervention will have preserved hippocampal volume at four months compared to the control group. We also hypothesise that this group will have preserved total brain volume and cognition, better mood, fitness, and higher levels of physical activity, than those receiving stretching and balance training. Discussion: The promise of exercise training to prevent, or slow, the accelerated rates of brain atrophy and cognitive decline experienced by stroke survivors needs to be tested. Post Ischaemic Stroke Cardiovascular Exercise Study has the potential, if proven efficacious, to identify a new treatment that could be readily translated to the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.