The question of the mode of origin of modern humans (Homo sapiens) has dominated palaeoanthropological debate over the last decade. This review discusses the main models proposed to explain modern human origins, and examines relevant fossil evidence from Eurasia, Africa and Australasia. Archaeological and genetic data are also discussed, as well as problems with the concept of 'modernity' itself. It is concluded that a recent African origin can be supported for H. sapiens, morphologically, behaviourally and genetically, but that more evidence will be needed, both from Africa and elsewhere, before an absolute African origin for our species and its behavioural characteristics can be established and explained.
Humans have an unusual life history, with an early weaning age, long childhood, late first reproduction, short interbirth intervals, and long lifespan. In contrast, great apes wean later, reproduce earlier, and have longer intervals between births. Despite 80 y of speculation, the origins of these developmental patterns in
Homo sapiens
remain unknown. Because they record daily growth during formation, teeth provide important insights, revealing that australopithecines and early
Homo
had more rapid ontogenies than recent humans. Dental development in later
Homo
species has been intensely debated, most notably the issue of whether Neanderthals and
H. sapiens
differ. Here we apply synchrotron virtual histology to a geographically and temporally diverse sample of Middle Paleolithic juveniles, including Neanderthals, to assess tooth formation and calculate age at death from dental microstructure. We find that most Neanderthal tooth crowns grew more rapidly than modern human teeth, resulting in significantly faster dental maturation. In contrast, Middle Paleolithic
H. sapiens
juveniles show greater similarity to recent humans. These findings are consistent with recent cranial and molecular evidence for subtle developmental differences between Neanderthals and
H. sapiens
. When compared with earlier hominin taxa, both Neanderthals and
H. sapiens
have extended the duration of dental development. This period of dental immaturity is particularly prolonged in modern humans.
The roles of migration, admixture and acculturation in the European transition to farming have been debated for over 100 years. Genome-wide ancient DNA studies indicate predominantly Aegean ancestry for continental Neolithic farmers, but also variable admixture with local Mesolithic hunter-gatherers. Neolithic cultures first appear in Britain ca. 4000 BCE, a millennium after they appear in adjacent areas of continental Europe. The pattern and process of this delayed British Neolithic transition remains unclear. We assembled genome-wide data from six Mesolithic and 67 Neolithic individuals found in Britain, dating from 8500-2500 BCE. Our analyses reveal persistent genetic affinities between Mesolithic British and Western European hunter-gatherers. We find overwhelming support for agriculture being introduced to Britain by incoming continental farmers, with small, geographically-structured levels of hunter-gatherer ancestry. Unlike other European Neolithic populations, we detect no resurgence of hunter-gatherer ancestry at any time during the Neolithic in Britain. Genetic affinities with Iberian Neolithic individuals indicate that British Neolithic people were mostly descended from Aegean farmers who followed the Mediterranean route of dispersal. We also infer considerable variation in pigmentation levels in Europe by ca. 6000 BCE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.