A new method is described, based on living amphipathic random macro-RAFT copolymers, which enables the efficient polymeric encapsulation of both inorganic and organic particulate materials via free-radical polymerization. The mechanism for this new approach is examined in the context of the polymer coating of zirconia- and alumina-coated titanium dioxide particles and its breadth of application demonstrated by the coating of organic phthalocyanine blue pigment particles. The particulate materials were first dispersed in water using a macro-RAFT copolymer as a stabilizer. Monomer and water-soluble initiator were then added to the system, and the monomer polymerized to form the coating. If nucleation of new polymer particles in the aqueous phase was to be avoided, it was found necessary to use a macro-RAFT copolymer that did not form micelles; within this constraint, a broad range of RAFT agents could be used. The macro-RAFT agents used in this work were found not to transfer competitively in the aqueous phase and therefore did not support growth of aqueous-phase polymer. Successful encapsulation of particles was demonstrated by TEM. The process described enables 100% of the particles to be encapsulated with greater than 95% of the polymer finishing up in the polymeric shells around the particles. Moreover, the coating reaction can be carried out at greater than 50% solids in many cases and avoids the agglomeration of particles during the coating step.
A robust and simple synthesis of nano-size oblate to dumbbell shaped polymeric anisotropic particles using RAFT mediated emulsion polymerization is presented. The particle synthesis relies on the property that monomer swollen cross-linked polymer seed particles shrink and expel some of the monomer when heated. Thus, upon heating for polymerization, some of the swelling monomer is expelled and subsequently polymerizes to form a bulge on the side of the original crosslinked seed particle. The shape of the bulge, and the degree of contact that the expelled monomer maintains with the original seed particle, is controlled by controlling the wettability of the seed surface by the expelled monomer. Very small monodisperse cross-linked polymer particles are initially prepared by RAFT mediated emulsion polymerization, then swollen with monomer and further polymerized to form anisotropic particles with a long dimension as little as 25 nm. Both the shape of the anisotropic bulge and the polymer composition, of each end of the final Janus nanoparticle can be finely controlled. The surface active properties of the Janus nanoparticles are demonstrated by their ability to contribute as stabilizers and influence particle formation in a surfactant free ab-initio emulsion polymerization. The method provides a simple and reproducible process for the production of Janus colloidal nanoparticles readily achievable in a normal latex plant where batch size would be limited only by the size of the reactor.
In this work, successful polymer coating of COOH‐functionalized multiwalled carbon nanotubes (MWCNTs) via reversible addition fragmentation chain transfer (RAFT) mediated emulsion polymerization is reported. The method used amphiphilic macro‐RAFT copolymers as stabilizers for MWCNT dispersions, followed by their subsequent coating with poly(methyl methacrylate‐co‐butyl acrylate). Poly(allylamine hydrochloride) was initially used to change the charge on the surface of the MWCNTs to facilitate adsorption of negatively charged macro‐RAFT copolymer onto their surface via electrostatic interactions. After polymerization, the resultant latex was found to contain uniform polymer‐coated MWCNTs where polymer layer thickness could be controlled by the amount of monomer fed into the reaction. The polymer‐coated MWCNTs were demonstrated to be dispersible in both polar and nonpolar solvents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013
In this work, successful synthesis of polymer nanorattles containing titanium dioxide pigment particles in the centers of air voids is reported. The method used amphiphilic macro‐RAFT copolymers as stabilizers for pigment dispersion and the subsequent encapsulation of the pigment with polymer. The particles were first encapsulated by a water swellable hydrophilic layer, followed by a hard hydrophobic layer. Nanorattles were formed by swelling of hydrophilic polymer layers on the surface of the encapsulated pigment particles in a basic solution at elevated temperature. After swelling, the outer hard polymer shell was crosslinked to improve its strength. Air void sizes of the nanorattles were found to be controlled by swelling time, temperature, and the hydrophilic polymer layer thickness. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.