Members of a previously unidentified family of potassium channel subunits were cloned from rat and human brain. The messenger RNAs encoding these subunits were widely expressed in brain with distinct yet overlapping patterns, as well as in several peripheral tissues. Expression of the messenger RNAs in Xenopus oocytes resulted in calcium-activated, voltage-independent potassium channels. The channels that formed from the various subunits displayed differential sensitivity to apamin and tubocurare. The distribution, function, and pharmacology of these channels are consistent with the SK class of small-conductance, calcium-activated potassium channels, which contribute to the afterhyperpolarization in central neurons and other cell types.
The slow afterhyperpolarization that follows an action potential is generated by the activation of small-conductance calcium-activated potassium channels (SK channels). The slow afterhyperpolarization limits the firing frequency of repetitive action potentials (spike-frequency adaptation) and is essential for normal neurotransmission. SK channels are voltage-independent and activated by submicromolar concentrations of intracellular calcium. They are high-affinity calcium sensors that transduce fluctuations in intracellular calcium concentrations into changes in membrane potential. Here we study the mechanism of calcium gating and find that SK channels are not gated by calcium binding directly to the channel alpha-subunits. Instead, the functional SK channels are heteromeric complexes with calmodulin, which is constitutively associated with the alpha-subunits in a calcium-independent manner. Our data support a model in which calcium gating of SK channels is mediated by binding of calcium to calmodulin and subsequent conformational alterations in the channel protein.
An intermediate conductance calciumactivated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is Ϸ50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K 0.5 ؍ 0.3 M). Although the K 0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3.5). Single-channel current amplitudes ref lected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (K i ؍ 2.5 nM) and clotrimazole (K i ؍ 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 M). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.