A field study was conducted in 2002 and 2003 to evaluate tolerance of eight rice cultivars to clomazone at 896 g ai/ha impregnated onto urea fertilizer. Rice foliar bleaching was 16 to 20% at 14 d after rice rooting (DAR) for long-grain cultivars ‘Ahrent’, ‘Cheniere’, ‘Cocodrie’, ‘Cypress’, ‘Francis’, and ‘Wells’ and 23 and 30% for medium-grain ‘Bengal’ and short-grain ‘Pirogue’, respectively, when clomazone was impregnated onto urea. Clomazone reduced the number of tillers/ m2 21 DAR for all cultivars. Early season height reductions occurred for all cultivars; however, Pirogue was the only cultivar shorter than the nontreated at harvest. There were no yield reductions with regard to the medium and long-grain cultivars when compared with respective nontreated cultivars. However, yield of short-grain Pirogue treated with clomazone was 1,740 kg/ha less than the nontreated.
Because of interest in monitoring crop response to weed interference, greenhouse experiments were conducted to evaluate interference of purple and yellow nutsedge on the growth, development, and spectral response of cotton and soybean. Cotton fresh weight was reduced 9 to 42% compared with the control when grown with yellow and purple nutsedge. Fresh weight of soybean was reduced 27 to 60% when it emerged simultaneously with yellow nutsedge and 45 to 63% when it emerged 7 d after yellow nutsedge. Soybean fresh weight was reduced 30 to 35% when it emerged simultaneously with purple nutsedge and 44 to 72% when it emerged 7 d after purple nutsedge. Reflectance data were analyzed using wavelet transformation techniques with the HAAR mother wavelet. Nine extracted features from the cotton and soybean leaf reflectance measurements were used to classify single-leaf cotton and soybean reflectance measurements to predict whether cotton or soybean was growing in the presence or absence of purple and yellow nutsedge. After training the system, the ability to separate leaf reflectance measurements of crops growing weed free from those growing in the presence of purple and yellow nutsedge was tested using cross-validation with the nearest mean classifier. Cross-validation accuracy results for cotton were 62 to 70%. Cross-validation accuracy for soybean and yellow nutsedge was similar, regardless of emergence, and ranged from 60 to 71%. Features extracted from the soybean reflectance measurements were not as effective in classifying soybean leaf reflectance measurements based on the presence or absence of purple nutsedge. A decrease in accuracy was observed for both simultaneous and delayed soybean emergence in purple nutsedge fresh weight categories from more than 2,560 g to more than 3,420 g. Overall, the system correctly classified soybean emerging simultaneously with purple nutsedge 58 to 74% and soybean emerging 7 d after purple nutsedge 53 to 67%. These results indicate the potential of differentiating crops under stress using spectral reflectance, although refinements to the system must be made before it is field ready.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.