Recent advances in medicine and biotechnology have prompted the need to develop nanoengineered delivery systems that can encapsulate a wide variety of novel therapeutics such as proteins, chemotherapeutics, and nucleic acids. Moreover, these delivery systems should be "intelligent", such that they can deliver their payload at a well-defined time, place, or after a specific stimulus. Polymeric multilayer capsules, made by layer-by-layer (LbL) coating of a sacrificial template followed by dissolution of the template, allow the design of microcapsules in aqueous conditions by using simple building blocks and assembly procedures, and provide a previously unmet control over the functionality of the microcapsules. Polymeric multilayer capsules have recently received increased interest from the life science community, and many interesting systems have appeared in the literature with biodegradable components and biospecific functionalities. In this Review we give an overview of the recent breakthroughs in their application for drug delivery.
33Within the Process Analytical Technology (PAT) framework, it is of utmost importance to obtain 34 critical process and formulation information during pharmaceutical processing. Process analyzers are 35 the essential PAT tools for real-time process monitoring and control as they supply the data from 36 which relevant process and product information and conclusions are to be extracted.
The aim of the present study was to propose a strategy for the implementation of a Process Analytical Technology system in freeze-drying processes. Mannitol solutions, some of them supplied with NaCl, were used as models to freeze-dry. Noninvasive and in-line Raman measurements were continuously performed during lyophilization of the solutions to monitor real time the mannitol solid state, the end points of the different process steps (freezing, primary drying, secondary drying), and physical phenomena occurring during the process. At-line near-infrared (NIR) and X-ray powder diffractometry (XRPD) measurements were done to confirm the Raman conclusions and to find out additional information. The collected spectra during the processes were analyzed using principal component analysis and multivariate curve resolution. A two-level full factorial design was used to study the significant influence of process (freezing rate) and formulation variables (concentration of mannitol, concentration of NaCl, volume of freeze-dried sample) upon freeze-drying. Raman spectroscopy was able to monitor (i) the mannitol solid state (amorphous, alpha, beta, delta, and hemihydrate), (ii) several process step end points (end of mannitol crystallization during freezing, primary drying), and (iii) physical phenomena occurring during freeze-drying (onset of ice nucleation, onset of mannitol crystallization during the freezing step, onset of ice sublimation). NIR proved to be a more sensitive tool to monitor sublimation than Raman spectroscopy, while XRPD helped to unravel the mannitol hemihydrate in the samples. The experimental design results showed that several process and formulation variables significantly influence different aspects of lyophilization and that both are interrelated. Raman spectroscopy (in-line) and NIR spectroscopy and XRPD (at-line) not only allowed the real-time monitoring of mannitol freeze-drying processes but also helped (in combination with experimental design) us to understand the process.
Recombinant antigens hold high potential to develop vaccines against lethal intracellular pathogens and cancer. However, they are poorly immunogenic and fail to induce potent cellular immunity. In this paper, we demonstrate that polymeric multilayer capsules (PMLC) strongly increase antigen delivery toward professional antigen-presenting cells in vivo, including dendritic cells (DCs), macrophages, and B cells, thereby enforcing antigen presentation and stimulating T cell proliferation. A thorough analysis of the T cell response demonstrated their capacity to induce IFN-γ secreting CD4 and CD8 T cells, in addition to follicular T-helper cells, a recently identified CD4 T cell subset supporting antibody responses. On the B cell level, PMLC-mediated antigen delivery promoted the formation of germinal centers, resulting in increased numbers of antibody-secreting plasma cells and elevated antibody titers. The functional relevance of the induced immune responses was validated in murine models of influenza and melanoma. On a mechanistic level, we have demonstrated the capacity of PMLC to activate the NALP3 inflammasome and trigger the release of the potent pro-inflammatory cytokine IL-1β. Finally, using DC-depleted mice, we have identified DCs as the key mediators of the immunogenic properties of PMLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.