The kynurenine pathway has been implicated as a major component of the neuroinflammatory response to brain injury and neurodegeneration. We found that the neurotoxic kynurenine pathway intermediate quinolinic acid (QUIN) is rapidly expressed, within 24 h, by reactive microglia following traumatic injury to the rodent neocortex. Furthermore, administration of the astrocytic protein metallothionein attenuated this neuroinflammatory response by reducing microglial activation (by approximately 30%) and QUIN expression. The suppressive effect of MT was confirmed upon cultured cortical microglia, with 1 mug/ml MT almost completely blocking interferon-gamma induced activation of microglia and QUIN expression. These results demonstrate the neuroimmunomodulatory properties of MT, which may have therapeutic applications for the treatment of traumatic brain injury.
Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II−/−) mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II−/− mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. Conclusion: MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver.
BackgroundOne of the key pathological features of AD is the formation of insoluble amyloid plaques. The major constituent of these extracellular plaques is the beta-amyloid peptide (Aβ), although Aβ is also found to accumulate intraneuronally in AD. Due to the slowly progressive nature of the disease, it is likely that neurons are exposed to sublethal concentrations of both intracellular and extracellular Aβ for extended periods of time.ResultsIn this study, we report that daily exposure to a sublethal concentration of Aβ1-40 (1 µM) for six days induces substantial apoptosis of cortical neurons cultured from Tg2576 mice (which express substantial but sublethal levels of intracellular Aβ). Notably, untreated Tg2576 neurons of similar age did not display any signs of apoptosis, indicating that the level of intracellular Aβ present in these neurons was not the cause of toxicity. Furthermore, wildtype neurons did not become apoptotic under the same chronic Aβ1-40 treatment. We found that this apoptosis was linked to Tg2576 neurons being unable to maintain K+ homeostasis following Aβ treatment. Furthermore, blocking K+ efflux protected Tg2576 neurons from Aβ-induced neurotoxicity. Interestingly, chronic exposure to 1 µM Aβ1-40 caused the generation of axonal swellings in Tg2576 neurons that contained dense concentrations of hyperphosphorylated tau. These were not observed in wildtype neurons under the same treatment conditions.ConclusionsOur data suggest that when neurons are chronically exposed to sublethal levels of both intra- and extra-cellular Aβ, this causes a K+-dependent neurodegeneration that has pathological characteristics similar to AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.