Abstract. For contact manifolds in dimension three, the notions of weak and strong symplectic fillability and tightness are all known to be inequivalent. We extend these facts to higher dimensions: in particular, we define a natural generalization of weak fillings and prove that it is indeed weaker (at least in dimension five), while also being obstructed by all known manifestations of "overtwistedness". We also find the first examples of contact manifolds in all dimensions that are not symplectically fillable but also cannot be called overtwisted in any reasonable sense. These depend on a higher dimensional analogue of Giroux torsion, which we define via the existence in all dimensions of exact symplectic manifolds with disconnected contact boundary.
We extract a nonnegative integer-valued invariant, which we call the "order of algebraic torsion", from the Symplectic Field Theory of a closed contact manifold, and show that its finiteness gives obstructions to the existence of symplectic fillings and exact symplectic cobordisms. A contact manifold has algebraic torsion of order zero if and only if it is algebraically overtwisted (i.e. has trivial contact homology), and any contact 3-manifold with positive Giroux torsion has algebraic torsion of order one (though the converse is not true). We also construct examples for each nonnegative k of contact 3-manifolds that have algebraic torsion of order k but not k - 1, and derive consequences for contact surgeries on such manifolds. The appendix by Michael Hutchings gives an alternative proof of our cobordism obstructions in dimension three using a refinement of the contact invariant in Embedded Contact Homology.Comment: 53 pages, 4 figures, with an appendix by Michael Hutchings; v.3 is a final update to agree with the published paper, and also corrects a minor error that appeared in the published version of the appendi
Abstract. We prove that every strong symplectic filling of a planar contact manifold admits a symplectic Lefschetz fibration over the disk, and every strong filling of T 3 similarly admits a Lefschetz fibration over the annulus. It follows that strongly fillable planar contact structures are also Stein fillable, and all strong fillings of T 3 are equivalent up to symplectic deformation and blowup. These constructions result from a compactness theorem for punctured J-holomorphic curves that foliate a convex symplectic manifold. We use it also to show that the compactly supported symplectomorphism group on T * T 2 is contractible, and to define an obstruction to strong fillability that yields a nongauge-theoretic proof of Gay's recent nonfillability result [Gay06] for contact manifolds with positive Giroux torsion.
English: We prove several results on weak symplectic fillings of contact 3-manifolds, including: (1) Every weak filling of any planar contact manifold can be deformed to a blow up of a Stein filling.(2) Contact manifolds that have fully separating planar torsion are not weakly fillable-this gives many new examples of contact manifolds without Giroux torsion that have no weak fillings. (3) Weak fillability is preserved under splicing of contact manifolds along symplectic pre-Lagrangian tori-this gives many new examples of contact manifolds without Giroux torsion that are weakly but not strongly fillable.
Abstract. We derive a numerical criterion for J -holomorphic curves in 4-dimensional symplectic cobordisms to achieve transversality without any genericity assumption. This generalizes results of Hofer-Lizan-Sikorav [HLS97] and Ivashkovich-Shevchishin [IS99] to allow punctured curves with boundary that generally need not be somewhere injective or immersed. As an application, we combine this with the intersection theory of punctured holomorphic curves to prove that certain geometrically natural moduli spaces are globally smooth orbifolds, consisting generically of embedded curves, plus unbranched multiple covers that form isolated orbifold singularities. Mathematics Subject Classification (2000). Primary 32Q65; Secondary 57R17.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.