We propose a method for fast, deterministic resonator reset based on tunable dissipative modes. The dissipator is based on a Josephson junction with relatively low quality factor. When the dissipator is tuned into resonance with a high quality microwave resonator, resonator photons are absorbed by the dissipator at a rate orders of magnitude faster than the resonator relaxation rate. We determine the optimal parameters for realization of the tunable dissipator, and examine application of the dissipator to removing spurious photon population in the qubit readout resonator in circuit quantum electrodynamics. We show that even in the nonlinear large photon occupation regime, this enhanced resonator decay rate can be attained by appropriate modulation of the dissipator frequency.arXiv:1806.01880v3 [cond-mat.mes-hall]
Decoherence in quantum bits (qubits) is a major challenge for realizing scalable quantum computing. One of the primary causes of decoherence in qubits and quantum circuits based on superconducting Josephson junctions is the critical current fluctuation. Many efforts have been devoted to suppressing the critical current fluctuation in Josephson junctions. Nonetheless, the efforts have been hindered by the defect-induced trapping states in oxide-based tunnel barriers and the interfaces with superconductors in the traditional Josephson junctions. Motivated by this, along with the recent demonstration of 2D insulator h-BN with exceptional crystallinity and low defect density, we fabricated a vertical NbSe 2 /h-BN/Nb Josephson junction consisting of a bottom NbSe 2 superconductor thin layer and a top Nb superconductor spaced by an atomically thin h-BN layer. We further characterized the superconducting current and voltage (I -V) relationships and Fraunhofer pattern of the NbSe 2 /h-BN/Nb junction. Notably, we demonstrated the critical current noise (1/ f noise power) in the h-BN-based Josephson device is at least a factor of four lower than that of the previously studied aluminum oxide-based Josephson junctions. Our work offers a strong promise of h-BN as a novel tunnel barrier for high-quality Josephson junctions and qubit applications.
Depicted above is the Bloch sphere of a quantum bit (qubit). Creating any arbitrary superposition of the two orthogonal quantum states requires coherent evolution along the surface of the Bloch sphere. Coherent evolution is enacted in our superconducting radio frequency quantum system through an external microwave drive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.