Electric moped scooter sharing services have recently experienced strong growth rates, particularly in Europe. Due to their compactness, environmental-friendliness and convenience, shared e-mopeds are suitable for helping to reduce the environmental impact of urban transport. However, its traffic-related, economic and environmental effects are merely represented in academic research. Therefore, this study investigates the ability of an e-moped sharing system to substitute passenger car trips, and the resulting economic and environmental effects. First, we model fleets of 2500, 10,000 and 50,000 shared e-mopeds in Berlin, based on a passenger car scenario generated by the multi-agent transport simulation framework MATSim. Afterwards, the total cost of ownership and a life cycle assessment are conducted. The results indicate that a substantial part of all passenger car trips in Berlin can be substituted. The larger the fleet, the more and longer trips are replaced. Simultaneously, the efficiency in terms of fleet utilization decreases. The scenario with 10,000 e-mopeds offers the lowest total distance-based costs for sharing operators, whereas a fleet consisting of 2500 vehicles exhibits the lowest environmental emissions per kilometer. Already with today’s grid mix, the use of shared e-mopeds results in a significant reduction in environmental impact compared to conventional and battery-electric passenger cars.
Electric moped scooter sharing services have recently experienced strong growth rates, particularly in Europe. Due to their compactness, environmental-friendliness and convenience, shared e-mopeds are suitable modes of transport in urban mobility to help reduce the environmental impact. However, its traffic-related, economic and environmental effects are merely represented in academic research. We used passenger car traffic data in Berlin generated by the multi-agent transport simulation framework MATSim to develop a python-based simulation, resembling an e-moped sharing system. Based on the results, a total cost of ownership and a life cycle assessment for fleet sizes of 2,500, 10,000 and 50,000 vehicles were conducted. The results indicate that a substantial part of all passenger car trips in Berlin can be substituted. The larger the fleet, the more and longer trips are replaced. Simultaneously, the efficiency in terms of fleet utilization decreases. The scenario with 10,000 e-mopeds offers the lowest total distance-based costs for sharing operators, whereas a fleet consisting of 2,500 vehicles exhibits the lowest environmental emissions per kilometer driven over the expected lifespan of a shared e-moped. Based on the renewable energy potential for 2050 forecasted by the German Federal Environment Agency, a significant overall decline in environmental impacts can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.