BackgroundWhen applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H2O2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significant loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified.ResultsAfter Cu-AHP pretreatment of 120 °C NaOH-H2O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H2O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H2O2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H2O pre-extraction has the lowest installed ($246 million) and raw material ($175 million) costs compared to the other process configurations.ConclusionsWe found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H2O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H2O pre-extraction.Electronic supplementary materialThe online version of this article (10.1186/s13068-018-1124-x) contains supplementary material, which is available to authorized users.
Both untransformed poplar and genetically modified “zip-lignin” poplar, in which additional ester bonds were introduced into the lignin backbone, were subjected to mild alkaline and copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment. Our hypothesis was that the lignin in zip-lignin poplar would be removed more easily than lignin in untransformed poplar during this alkaline pretreatment, resulting in higher sugar yields following enzymatic hydrolysis. We observed improved glucose and xylose hydrolysis yields for zip-lignin poplar compared to untransformed poplar following both alkaline-only pretreatment (56% glucose yield for untransformed poplar compared to 67% for zip-lignin poplar) and Cu-AHP pretreatment (77% glucose yield for untransformed poplar compared to 85% for zip-lignin poplar). Compositional analysis, glycome profiling, and microscopy all supported the notion that the ester linkages increase delignification and improve sugar yields. Essentially no differences were noted in the molecular weight distributions of solubilized lignins between the zip-lignin poplar and the control line. Significantly, when zip-lignin poplar was utilized as the feedstock, hydrogen peroxide, catalyst, and enzyme loadings could all be substantially reduced while maintaining high sugar yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.