Abstract. This paper presents a technique for representing and displaying high dynamic-range texture maps (HDRTMs) using current graphics hardware. Dynamic range in real-world environments often far exceeds the range representable in 8-bit per-channel texture maps. The increased realism afforded by a highdynamic range representation provides improved fidelity and expressiveness for interactive visualization of image-based models. Our technique allows for realtime rendering of scenes with arbitrary dynamic range, limited only by available texture memory. In our technique, high-dynamic range textures are decomposed into sets of 8-bit textures. These 8-bit textures are dynamically reassembled by the graphics hardware's programmable multitexturing system or using multipass techniques and framebuffer image processing. These operations allow the exposure level of the texture to be adjusted continuously and arbitrarily at the time of rendering, correctly accounting for the gamma curve and dynamic range restrictions of the display device. Further, for any given exposure only two 8-bit textures must be resident in texture memory simultaneously. We present implementation details of this technique on various 3D graphics hardware architectures. We demonstrate several applications, including high-dynamic range panoramic viewing with simulated auto-exposure, real-time radiance environment mapping, and simulated Fresnel reflection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.