The reference database of highly informative Y-chromosomal short tandem repeat (STR) haplotypes (YHRD), available online at http://ystr.charite.de, represents the largest collection of male-speci®c genetic pro®les currently available for European populations. By September 2000, YHRD contained 4688 9-locus (so-called``minimal'') haplotypes, 40% of which have been extended further to include two additional loci. Establishment of YHRD has been facilitated by the joint efforts of 31 forensic and anthropological institutions. All contributing laboratories have agreed to standardize their Y-STR haplotyping protocols and to participate in a quality assurance exercise prior to the inclusion of any data. In view of its collaborative character, and in order to put YHRD to its intended use, viz. the support of forensic caseworkers in their routine decisionmaking process, the database has been made publicly available via the Internet in February 2000. Online searches for complete or partial Y-STR haplotypes from evidentiary or non-probative material can be performed on a non-commercial basis, and yield observed haplotype counts as well as extrapolated population frequency estimates. In addition, the YHRD website provides information about the quality control test, genotyping protocols, haplotype formats and informativity, population genetic analysis, literature references, and a list of contact addresses of the contributing laboratories. #
To test for human population substructure and to investigate human population history we have analysed Y-chromosome diversity using seven microsatellites (Y-STRs) and ten binary markers (Y-SNPs) in samples from eight regionally distributed populations from Poland (n = 913) and 11 from Germany (n = 1,215). Based on data from both Y-chromosome marker systems, which we found to be highly correlated (r = 0.96), and using spatial analysis of the molecular variance (SAMOVA), we revealed statistically significant support for two groups of populations: (1) all Polish populations and (2) all German populations. By means of analysis of the molecular variance (AMOVA) we observed a large and statistically significant proportion of 14% (for Y-SNPs) and 15% (for Y-STRs) of the respective total genetic variation being explained between both countries. The same population differentiation was detected using Monmonier's algorithm, with a resulting genetic border between Poland and Germany that closely resembles the course of the political border between both countries. The observed genetic differentiation was mainly, but not exclusively, due to the frequency distribution of two Y-SNP haplogroups and their associated Y-STR haplotypes: R1a1*, most frequent in Poland, and R1*(xR1a1), most frequent in Germany. We suggest here that the pronounced population differentiation between the two geographically neighbouring countries, Poland and Germany, is the consequence of very recent events in human population history, namely the forced human resettlement of many millions of Germans and Poles during and, especially, shortly after World War II. In addition, our findings have consequences for the forensic application of Y-chromosome markers, strongly supporting the implementation of population substructure into forensic Y chromosome databases, and also for genetic association studies.
The evaluation of the short tandem repeat (STR) markers DXS10079, DXS10074 and DXS10075 was amended to establish a STR cluster spanning a genetic distance<1 cM. These three STRs are located within a 280-kb region at Xq12 and provide stable haplotypes useful for solving complex kinship cases. Theoretically, this cluster could give rise to 2,548 different haplotypes in the German population and the genotyping of 781 men revealed the presence of 172 haplotypes. Since the three STRs were shown to be in strong linkage disequilibrium (LD), haplotype frequencies cannot be computed on the basis of a single locus allele frequency alone but have to be estimated directly. Here, we present data on linkage, haplotype frequencies and LD in a German population. Further clusters from other regions of the X chromosome will be published in the future to cover the chromosome with a well-structured network of highly informative sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.