White spotting phenotypes in horses can range in severity from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for such phenotypes in horses. For the present study, we re-investigated a large horse family segregating a variable white spotting phenotype, for which conventional Sanger sequencing of the candidate genes' individual exons had failed to reveal the causative variant. We obtained whole genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous ~1.9-kb deletion spanning exons 10-13 of the KIT gene (chr3:77,740,239_77,742,136del1898insTATAT). In continuity with previously named equine KIT variants we propose to designate the newly identified deletion variant W22. We had access to 21 horses carrying the W22 allele. Four of them were compound heterozygous W20/W22 and had a completely white phenotype. Our data suggest that W22 represents a true null allele of the KIT gene, whereas the previously identified W20 leads to a partial loss of function. These findings will enable more precise genetic testing for depigmentation phenotypes in horses.
Genetic markers are important resources for individual identification and parentage assessment. Although short tandem repeats (STRs) have been the traditional DNA marker, technological advances have led to single nucleotide polymorphisms (SNPs) becoming an attractive alternative. SNPs can be highly multiplexed and automatically scored, which allows for easier standardization and sharing among laboratories. Equine parentage is currently assessed using STRs. We obtained a publicly available SNP dataset of 729 horses representing 32 diverse breeds. A proposed set of 101 SNPs was analyzed for DNA typing suitability. The overall minor allele frequency of the panel was 0.376 (range 0.304-0.419), with per breed probability of identities ranging from 5.6 × 10 to 1.86 × 10 . When one parent was available, exclusion probabilities ranged from 0.9998 to 0.999996, although when both parents were available, all breeds had exclusion probabilities greater than 0.9999999. A set of 388 horses from 35 breeds was genotyped to evaluate marker performance on known families. The set included 107 parent-offspring pairs and 101 full trios. No horses shared identical genotypes across all markers, indicating that the selected set was sufficient for individual identification. All pairwise comparisons were classified using ISAG rules, with one or two excluding markers considered an accepted parent-offspring pair, two or three excluding markers considered doubtful and four or more excluding markers rejecting parentage. The panel had an overall accuracy of 99.9% for identifying true parent-offspring pairs. Our developed marker set is both present on current generation SNP chips and can be highly multiplexed in standalone panels and thus is a promising resource for SNP-based DNA typing.
Over 30 polymorphisms in the KIT Proto-Oncogene Receptor Tyrosine Kinase (KIT) gene have been implicated in white spotting patterns ranging from small areas to full dermal depigmentation in the horse. We performed a candidate-gene exon sequencing approach on KIT and MITF, 2 known causatives of white spotting patterns, within 2 families of horses of unknown white spotting. Family 1 (Fam1, N = 5) consisted of a Quarter Horse stallion and 4 offspring with white spotting pattern ranging from legs, lower ventral, and head regions with jagged borders, to almost complete white. The second family (Fam2, N = 7) consisted of 6 half-sibling American Paint Horse/Quarter Horse and their dam, demonstrating unpigmented limbs with belly spots and an extensive white patterning on the face. This approach resulted in 2 variants significantly associated with familial phenotypes, where Fam1 variant is an indel leading to a frameshift mutation, and Fam2 a non-synonymous SNP. We validated the variants within an unrelated population of horses (Fam2 variant, P = 0.00271944) as well as for protein functional impact with ExPASy, Protter, Phyre2, SMART, PROVEAN, SIFT, and I-TASSER, confirming the reported associations. Fam1 associated variant, deemed W31, alters the protein sequence, leading to an early stop codon truncating the normal amino acid sequence from 972 to just 115 amino acids. Fam2 associated variant, deemed W32, may have a subtle impact on receptor function or could be in linkage with a non-coding or regulatory change creating the mild spotting pattern observed in this family.
White spotting phenotypes in horses are highly valued in some breeds. They are quite variable and may range from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for white spotting phenotypes in horses. For the present study, we investigated an American Paint Horse family segregating a phenotype involving white spotting and blue eyes. Six of eight horses with the white-spotting phenotype were deaf. We obtained whole-genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous~63-kb deletion spanning exons 6-9 of the MITF gene (chr16:21 503 211-21 566 617). We confirmed the breakpoints of the deletion by PCR and Sanger sequencing. PCR-based genotyping revealed that all eight available affected horses from the family carried the deletion. The finding of an MITF variant fits well with the syndromic phenotype involving both depigmentation and an increased risk for deafness and corresponds to human Waardenburg syndrome type 2A. Our findings will enable more precise genetic testing for depigmentation phenotypes in horses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.