Insulin-like growth factor-1 (IGF-1) is a pleiotropic molecule with neurotrophic and immunomodulatory functions. Knowing the capacity of chronically activated microglia to produce IGF-1 may therefore show essential to promote beneficial microglial functions in Alzheimer’s disease (AD). Here, we investigated the expression of IGF-1 mRNA and IGF-1 along with the expression of tumor necrosis factor (TNF) mRNA, and the amyloid-β (Aβ) plaque load in the hippocampus of 3- to 24-month-old APP
swe
/PS1
ΔE9
transgenic (Tg) and wild-type (WT) mice. As IGF-1, in particular, is implicated in neurogenesis we also monitored the proliferation of cells in the subgranular zone (sgz) of the dentate gyrus. We found that the Aβ plaque load reached its maximum in aged 21- and 24-month-old APP
swe
/PS1
ΔE9
Tg mice, and that microglial reactivity and hippocampal IGF-1 and TNF mRNA levels were significantly elevated in aged APP
swe
/PS1
ΔE9
Tg mice. The sgz cell proliferation decreased with age, regardless of genotype and increased IGF-1/TNF mRNA levels. Interestingly, IGF-1 mRNA was expressed in subsets of sgz cells, likely neuroblasts, and neurons in both genotypes, regardless of age, as well as in glial-like cells. By double
in situ
hybridization these were shown to be IGF1 mRNA
+
CD11b mRNA
+
cells, i.e., IGF-1 mRNA-expressing microglia. Quantification showed a 2-fold increase in the number of microglia and IGF-1 mRNA-expressing microglia in the molecular layer of the dentate gyrus in aged APP
swe
/PS1
ΔE9
Tg mice. Double-immunofluorescence showed that IGF-1 was expressed in a subset of Aβ plaque-associated CD11b
+
microglia and in several subsets of neurons. Exposure of primary murine microglia and BV2 cells to Aβ
42
did not affect IGF-1 mRNA expression. IGF-1 mRNA levels remained constant in WT mice with aging, unlike TNF mRNA levels which increased with aging. In conclusion, our results suggest that the increased IGF-1 mRNA levels can be ascribed to a larger number of IGF-1 mRNA-expressing microglia in the aged APP
swe
/PS1
ΔE9
Tg mice. The finding that subsets of microglia retain the capacity to express IGF-1 mRNA and IGF-1 in the aged APP
swe
/PS1
ΔE9
Tg mice is encouraging, considering the beneficial therapeutic potential of modulating microglial production of IGF-1 in AD.
Neuroinflammation is a hallmark of Alzheimer's disease and TNFα as the main inducer of neuroinflammation has neurodegenerative but also pro-regenerative properties, however, the dose-dependent molecular changes on signaling pathway level are not fully understood. We performed quantitative proteomics and phospho-proteomics to target this point.In HT22 cells, we found that TNFα reduced mitochondrial signaling and inhibited mTOR protein translation signaling but also led to induction of neuroprotective MAPK-CREB signaling. Stimulation of human neurons with TNFα revealed similar cellular mechanisms. Moreover, a number of synaptic plasticity-associated genes were altered in their expression profile including CREB.SiRNA-mediated knockdown of CREB in human neurons prior to TNFα stimulation led to a reduced number of protein/phospho-protein hits compared to siRNA-mediated knockdown of CREB or TNFα stimulation alone and countermeasured the reduced CREB signaling. In vivo data of TNFα knockout mice showed that learning ability did not depend on TNFα per se but that TNFα was essential for preserving the learning ability after episodes of lipopolysaccharide-induced neuroinflammation. This may be based on modulation of CREB/CREB signaling as revealed by the in vitro / in vivo data.Our data show that several molecular targets and signaling pathways induced by TNFα in neurons resemble those seen in Alzheimer's disease pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.