We put forward a new method for the solution of eigenvalue problems for (systems of) ordinary differential equations, where our main focus is on eigenvalue problems for singular Schrödinger equations arising for example in electronic structure computations. In most established standard methods, the generation of the starting values for the computation of eigenvalues of higher index is a critical issue. Our approach comprises two stages: First we generate rough approximations by a matrix method, which yields several eigenvalues and associated eigenfunctions simultaneously, albeit with moderate accuracy. In a second stage, these approximations are used as starting values for a collocation method which yields approximations of high accuracy efficiently due to an adaptive mesh selection strategy, and additionally provides reliable error estimates. We successfully apply our method to the solution of the quantum mechanical Kepler, Yukawa and the coupled ODE Stark problems.keywords: electronic structure computation, polynomial collocation, fullpotential core solver, singular eigenvalue problems MSC 65L15, 65L60, 65N25, 81-08 PACS 31.15ae, 31.15es, 32.60.+i 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.