Abstract* "This manuscript has been accepted for publication in Science Translational Medicine. This version has not undergone final editing.Please refer to the complete version of record at www.sciencetranslationalmedicine.org/. The manuscript may not be reproduced or used in any manner that does not fall within the fair use provisions of the Copyright Act without the prior, written permission of AAAS."To whom correspondence should be addressed: ellie.barnes@ndm.ox.ac.uk E Barnes Peter Medawar Building, South Parks Rd, Oxford, UK OX1 3SY . + joint author contributions Author contributions: E.B., S. Capone, S. Colloca, J.H., A.F., R.C., C.K., A.N., and P.K. designed the study/protocols; L. Swadling, S. Capone., R.A., A.B., R.R., E.N., J.H., C.K., D.B., J.F., A.K., V.A., M.D.S., F.G., M.L.E., L. Siani., C.T., A.H., M.D., A.F., E.B., and P.K., performed the research and analysis; L. Swadling., E.B., A.F., S. Capone, and P.K. wrote the manuscript; E.B. was the principal investigator. Europe PMC Funders Group Europe PMC Funders Author Manuscripts Europe PMC Funders Author ManuscriptsA protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies and assessment of host immunity during acute infection highlight the critical role that effective T-cell immunity plays in viral control. In this first-in-man study we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A and NS5B proteins of HCV genotype-1b.Analysis employed single cell mass cytometry (CyTOF), and HLA class-I peptide tetramer technology in healthy human volunteers. We show that HCV specific T-cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8+ and CD4+ HCV specific T-cells targeting multiple HCV antigens. Sustained memory and effector T-cell populations are generated and T-cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) following heterologous MVA boost.We have developed a HCV vaccine strategy, with durable, broad, sustained and balanced T-cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine.
For two decades the scientific community has sought to understand why some people clear hepatitis C virus (HCV) and others do not. Recently, several large genome-wide association studies have identified single nucleotide polymorphisms (SNPs) linked to interferon lambda 3 (IFNλ3) that are associated with the spontaneous resolution and successful treatment of HCV infection. These observations are generating intense research activity; the hope is that IFNλ3 genetic variants may serve as important predictive biomarkers of treatment outcome and offer new insights into the biological pathways involved in viral control. A pharmacogenomic treatment approach for HCV can now be envisaged, with the incorporation of host genetic variants into a predictive treatment algorithm with other factors. The SNPs associated with the clinical outcome of HCV infection are located some distance from the IFNλ3 gene itself, and causal genetic variants have yet to be clearly defined. Locating these causal variants, mapping in detail the IFNλ3 signalling pathways and determining the downstream genetic signature so induced will clarify the role of IFNλ3 in the pathogenesis of HCV. Clinical studies assessing safety and efficacy in the treatment of HCV with exogenous IFNλ3 are currently underway. Early results suggest that IFNλ3 treatment inhibits HCV replication and is associated with a limited side effect profile. However, hepatotoxicity in both healthy volunteers and HCV-infected patients has been described. This review discusses the genetic studies that link IFNλ3 to both the spontaneous resolution and treatment-induced clearance of HCV and the potential impact of this in clinical practice, the biology of IFNλ3 as currently understood and how this may impact on HCV infection, and describes the early studies that assess the role of this cytokine in the treatment of patients with HCV.
Adenoviral vectors encoding hepatitis C virus (HCV) non-structural proteins induce multi-specific, high-magnitude, durable CD4+ and CD8+ T-cell responses in healthy volunteers. We now assess the capacity of these vaccines to induce functional HCV-specific immune responses and determine T-cell cross-reactivity to endogenous virus in patients with chronic HCV infection. HCV genotype-1 infected patients were vaccinated using heterologous adenoviral vectors (ChAd3-NSmut and Ad6-NSmut) encoding HCV non-structural proteins in a dose-escalation, prime-boost regimen, with and without concomitant pegylated interferon-α/ribavirin therapy. Analysis of immune responses ex vivo used human leukocyte antigen class-I pentamers, intracellular cytokine staining and fine mapping in interferon-γ ELISpot assays. Cross reactivity of T-cells with population and endogenous viral variants was determined following viral sequence analysis. Compared to healthy volunteers, the magnitude of HCV specific T-cell responses following vaccination was markedly reduced. CD8+ HCV specific T-cell responses were detected in 15/24 patients at the highest dose, whereas CD4+ T-cell responses were rarely detectable.. Analysis of the host circulating viral sequence showed that T-cell responses were rarely elicited when there was sequence homology between vaccine immunogen and endogenous virus. In contrast, T-cells were induced in the context of genetic mismatch between vaccine immunogen and endogenous virus; however, these commonly failed to recognise circulating epitope variants and had a distinct partially-functional phenotype. Vaccination was well tolerated but had no significant effect on HCV viral load. Conclusion Vaccination with potent HCV adenoviral vectored vaccines fails to restore T-cell immunity except where there is genetic mismatch between vaccine immunogen and endogenous virus. This highlights the major challenge of overcoming T-cell exhaustion in the context of persistent antigen exposure with implications for cancer and other persistent infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.