Synapsins are neuronal phosphoproteins crucial to regulating the processes required for normal neurotransmitter release. Synapsin II, in particular, has been implied as a candidate gene for schizophrenia. This study investigated synapsin II mRNA expression, using Real Time RT-PCR, in coded dorsolateral prefrontal cortical samples provided by the Stanley Foundation Neuropathology Consortium. Synapsin IIa was decreased in patients with schizophrenia when compared to both healthy subjects and patients with bipolar disorder, whereas the synapsin IIb was only significantly reduced in patients with schizophrenia when compared to healthy subjects, but not patients with bipolar disorder. Furthermore, lifetime antipsychotic drug use was positively associated with synapsin IIa expression in patients with schizophrenia. Results suggest that impairment of synaptic transmission by synapsin II reduction may contribute to dysregulated convergent molecular mechanisms which result in aberrant neural circuits that characterize schizophrenia, while implicating involvement of synapsin II in therapeutic mechanisms of currently prescribed antipsychotic drugs.
Curcumin (Curcuma Longa Linn), the active component of turmeric, has been shown to be effective in ameliorating several stress and drug-induced disorders in rats and humans. However, it is unclear whether short term curcumin administration can prevent the abnormal oro-facial movements (AOFM) which develop following blockade of dopamine D2 receptors by antagonist such as Haloperidol. The objective of this study is to determine whether short term treatment with curcumin along with Haloperidol can prevent the development of AOFM in rats. Male Sprague Dawley rats were administered curcumin at 200 mg/kg, and Haloperidol at 2 mg/kg daily for 2 weeks, and AOFMs and locomotor activity were assessed at baseline, day 7 and day 14. By day 14, rats receiving concurrent curcumin administration had a significant reduction in the incidence of Haloperidol-induced AOFMs, but no change on the Haloperidol-induced hypolocomotion. There was no spiked increase in locomotor activity in absence of challenge with dopamine D2 receptor agonist. The exact mechanism by which curcumin attenuates AOFMs remains unknown, therefore, we performed a proteomic analysis of the striatal samples obtained from control and curcumin treated groups. A number of proteins were altered by curcumin, among them an antiapoptotic protein, Bcl-XL, was significantly upregulated. These results suggest that curcumin may be a promising treatment to prevent the development of AOFMs and further suggest some therapeutic value in the treatment of movement disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.