We present an algorithm to solve BSDEs with jumps based on Wiener Chaos Expansion and Picard's iterations. This paper extends the results given in [7] to the case of BSDEs with jumps. We get a forward scheme where the conditional expectations are easily computed thanks to chaos decomposition formulas. Concerning the error, we derive explicit bounds with respect to the number of chaos, the discretization time step and the number of Monte Carlo simulations. We also present numerical experiments. We obtain very encouraging results in terms of speed and accuracy.
We consider the L 2 -regularity of solutions to backward stochastic differential equations (BSDEs) with Lipschitz generators driven by a Brownian motion and a Poisson random measure associated with a Lévy process (X t ) t∈ [0,T ] . The terminal condition may be a Borel function of finitely many increments of the Lévy process which is not necessarily Lipschitz but only satisfies a fractional smoothness condition. The results are obtained by investigating how the special structure appearing in the chaos expansion of the terminal condition is inherited by the solution to the BSDE.
We show that the comparison results for a backward SDE with jumps established in Royer (Stoch. Process. Appl 116: 1358–1376, 2006) and Yin and Mao (J. Math. Anal. Appl 346: 345–358, 2008) hold under more simplified conditions. Moreover, we prove existence and uniqueness allowing the coefficients in the linear growth- and monotonicity-condition for the generator to be random and time-dependent. In the
L
2
-case with linear growth, this also generalizes the results of Kruse and Popier (Stochastics 88: 491–539, 2016). For the proof of the comparison result, we introduce an approximation technique: Given a BSDE driven by Brownian motion and Poisson random measure, we approximate it by BSDEs where the Poisson random measure admits only jumps of size larger than 1/
n
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.