Clinically relevant peripheral neuropathies (such as diabetic and human immunodeficiency virus sensory neuropathies) are characterized by distal axonal degeneration, rather than neuronal death. Here, we describe a novel, endogenous pathway that prevents axonal degeneration. We show that in response to axonal injury, periaxonal Schwann cells release erythropoietin (EPO), which via EPO receptor binding on neurons, prevents axonal degeneration. We demonstrate that the relevant axonal injury signal that stimulates EPO production from surrounding glial cells is nitric oxide. In addition, we show that this endogenous pathway can be therapeutically exploited by administering exogenous EPO. In an animal model of distal axonopathy, systemic EPO administration prevents axonal degeneration, and this is associated with a reduction in limb weakness and neuropathic pain behavior. Our in vivo and in vitro data suggest that EPO prevents axonal degeneration and therefore may be therapeutically useful in a wide variety of human neurological diseases characterized by axonopathy.
Human immunodeficiency virus (HIV)-associated sensory neuropathy (SN)is the most common neurological complication of HIV infection in the current highly active antiretroviral therapy era. The painful sensory neuropathy is associated with the use of dideoxynucleoside antiretrovirals, and its development limits the choice of antiretroviral drugs in affected patients. There are presently no effective therapies for HIV-SN, and moreover there has been no robust animal model of HIV-SN in which candidate therapeutic agents can be tested. In this paper, we show that we have established a rodent model of HIV-SN by oral administration of a dideoxynucleoside drug, didanosine, to transgenic mice expressing the HIV coat protein gp120 under a GFAP promoter. The neuropathy in these rodents is characterized by distal degeneration of unmyelinated sensory axons, similar to the "dying back" pattern of C-fiber loss seen in patients with HIV-SN. This model will be useful in examining mechanisms of distal axonal degeneration and testing potential neuroprotective compounds that may prevent development of the sensory neuropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.