Cystic fibrosis (CF) is a common, life-threatening, multisystemic, autosomal recessive disorder. In the last few years, giant steps have been made with regard to the understanding of CF pathophysiology, allowing the scientific community to propose mechanisms that cause the myriad of CF clinical manifestations. Following the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989, the structure and function of the CFTR protein were described. Since then, more than 2,000 variants of the CFTR gene and their impact on the amount and function of the CFTR protein have been reported. The role of the CFTR protein as an ion channel transporting chloride and bicarbonate and its repercussions on different epithelial cell-lined organs and mucus are now better understood. Mechanisms behind susceptibility to infection in CF have also been proposed and include abnormalities in the composition, volume and acidity of the airway surface liquid, changes in the submucosal gland's anatomy and function, and deficiencies in the mucociliary clearance system. Numerous hypotheses explaining the excessive inflammatory response in CF are also debated and involve impaired mucociliary clearance, persistent hypoxia, lipid abnormalities, protease and antiprotease disproportion, and oxidant and antioxidant imbalance. The purpose of this review is to summarize our current knowledge of CF pathophysiology, including significant historic discoveries and most recent breakthroughs, and to improve understanding and awareness of this fatal disease.
Rare diseases affect 400 million individuals worldwide and cause significant morbidity and mortality. Finding solutions for rare diseases can be very challenging for physicians and researchers. Cystic fibrosis (CF), a genetic, autosomal recessive, multisystemic, life-limiting disease does not escape this sad reality. Despite phenomenal progress in our understanding of this disease, treatment remains difficult. Until recently, therapies for CF individuals were focused on symptom management. The discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and its product, a protein present at the apical surface of epithelial cells regulating ion transport, allowed the scientific community to learn about the basic defect in CF and to study potential therapies targeting the dysfunctional protein. In the past few years, promising therapies with the goal to restore CFTR function became available and changed the lives of several CF patients. These medications, called CFTR modulators, aim to correct, potentialize, stabilize or amplify CFTR function. Furthermore, research is ongoing to develop other targeted therapies that could be more efficient and benefit a larger proportion of the CF community. The purpose of this review is to summarize our current knowledge of CF genetics and therapies restoring CFTR function, particularly CFTR modulators and gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.