While previous studies on language processing highlighted several ERP components in relation to specific stages of sound and speech processing, no study has yet combined them to obtain a comprehensive picture of language abilities in a single session. Here, we propose a novel task-free paradigm aimed at assessing multiple levels of speech processing by combining various speech and nonspeech sounds in an adaptation of a multifeature passive oddball design. We recorded EEG in healthy adult participants, who were presented with these sounds in the absence of sound-directed attention while being engaged in a primary visual task. This produced a range of responses indexing various levels of sound processing and language comprehension: (a) P1-N1 complex, indexing obligatory auditory processing; (b) P3-like dynamics associated with involuntary attention allocation for unusual sounds; (c) enhanced responses for native speech (as opposed to nonnative phonemes) from ∼50 ms from phoneme onset, indicating phonological processing; (d) amplitude advantage for familiar real words as opposed to meaningless pseudowords, indexing automatic lexical access; (e) topographic distribution differences in the cortical activation of action verbs versus concrete nouns, likely linked with the processing of lexical semantics. These multiple indices of speech-sound processing were acquired in a single attention-free setup that does not require any task or subject cooperation; subject to future research, the present protocol may potentially be developed into a useful tool for assessing the status of auditory and linguistic functions in uncooperative or unresponsive participants, including a range of clinical or developmental populations.
Diagnosing patients with disorders of consciousness is immensely difficult and often results in misdiagnoses, which can have fatal consequences. Despite the severity of this well-known issue, a reliable assessment tool has not yet been developed and implemented in the clinic. The main aim of this focused review is to evaluate the various event-related potential paradigms, recorded using EEG, that may be used to improve the assessment of patients with disorders of consciousness; we also provide a brief comparison of these paradigms with other measures. Notably, most event-related potential studies on the topic have focused on testing a small set of components, or even just a single component. However, to be of practical use, we argue that an assessment should probe a range of cognitive and linguistic functions at once. We suggest a novel approach that combines a set of well-tested auditory event-related potential components: N100, mismatch negativity, P3a, N400, early left anterior negativity and lexical response enhancement. Combining these components in a single, task-free design will provide a multidimensional assessment of cognitive and linguistic processes, which may help physicians make a more precise diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.