Chronic myelogenous leukemia (CML) arises from the constitutive activity of the BCR-ABL1 oncoprotein. Tyrosine kinase inhibitors (TKIs) that target the ATP-binding site have transformed CML into a chronic manageable disease. However, some patients develop drug resistance due to ATP-site mutations impeding drug binding. We describe the discovery of asciminib (ABL001), the first allosteric BCR-ABL1 inhibitor to reach the clinic. Asciminib binds to the myristate pocket of BCR-ABL1 and maintains activity against TKI-resistant ATP-site mutations. Although resistance can emerge due to myristate-site mutations, these are sensitive to ATP-competitive inhibitors so that combinations of asciminib with ATP-competitive TKIs suppress the emergence of resistance. Fragment-based screening using NMR and X-ray yielded ligands for the myristate pocket. An NMR-based conformational assay guided the transformation of these inactive ligands into ABL1 inhibitors. Further structure-based optimization for potency, physicochemical, pharmacokinetic, and drug-like properties, culminated in asciminib, which is currently undergoing clinical studies in CML patients.
Targeted delivery of drugs to their site of action is a promising strategy to decrease adverse effects and enhance efficacy, but successful applications of this strategy have been scarce. Human bone is a tissue with unique properties due to its high hydroxyapatite mineral content. However, with the exception of bisphosphonates, bone mineral has not been targeted in a successful clinical application of drugs that act on bone, such as anti-resorptive or bone anabolic agents. Herein we present an NMR-based in vitro assay to measure binding affinities of small molecules to hydroxyapatite (HAP) or bone powder. Binding was shown to be specific and competitive, and the assay can be carried out in a direct binding format or in competition mode. A selection of clinically relevant bisphosphonates was ranked by their binding affinity for HAP. The binding affinity decreases in the order: pamidronate > alendronate > zoledronate > risedronate > ibandronate. The differences in binding affinities span a factor of 2.1 between pamidronate and ibandronate, consistent with previous studies. The rank order is very similar with bone powder, although the binding capacity of bone powder is smaller and binding kinetics are slower. A zoledronate derivative that lacks the central hydroxy group binds to HAP with 2.3-fold weaker affinity than zoledronate itself. Any small molecule can be analyzed for its binding to HAP or bone powder, and the binding of common bone-staining agents such as alizarin and its derivatives was confirmed in the new assay. This assay supports a strategy for targeted delivery of drugs to bone by attaching a bone-affinity tag to the active drug substance.
The identification of compounds that bind to a protein of interest is of central importance in contemporary drug research. For screening of compound libraries, NMR techniques are widely used, in particular the Water-Ligand Observed via Gradient SpectroscopY (WaterLOGSY) experiment. Here we present an optimized experiment, the polarization optimized WaterLOGSY (PO-WaterLOGSY). Based on a water flip-back strategy in conjunction with model calculations and numerical simulations, the PO-WaterLOGSY is optimized for water polarization recovery. Compared to a standard setup with the conventional WaterLOGSY, time consuming relaxation delays have been considerably shortened and can even be omitted through this approach. Furthermore, the robustness of the pulse sequence in an industrial setup was increased by the use of hard pulse trains for selective water excitation and water suppression. The PO-WaterLOGSY thus yields increased time efficiency by factor of 3-5 when compared with previously published schemes. These time savings have a substantial impact in drug discovery, since significantly larger compound libraries can be tested in screening campaigns.
Farnesyl pyrophosphate synthase (FPPS) is an established target for the treatment of bone diseases, but also shows promise as an anticancer and anti-infective drug target. Currently available anti-FPPS drugs are active-site-directed bisphosphonate inhibitors, the peculiar pharmacological profile of which is inadequate for therapeutic indications beyond bone diseases. The recent discovery of an allosteric binding site has paved the way toward the development of novel non-bisphosphonate FPPS inhibitors with broader therapeutic potential, notably as immunomodulators in oncology. Herein we report the discovery, by an integrated lead finding approach, of two new chemical classes of allosteric FPPS inhibitors that belong to the salicylic acid and quinoline chemotypes. We present their synthesis, biochemical and cellular activities, structure-activity relationships, and provide X-ray structures of several representative FPPS complexes. These novel allosteric FPPS inhibitors are devoid of any affinity for bone mineral and could serve as leads to evaluate their potential in none-bone diseases.
Fragment‐based lead discovery has become a fundamental approach to identify ligands that efficiently interact with disease‐relevant targets. Among the numerous screening techniques, fluorine‐detected NMR has gained popularity owing to its high sensitivity, robustness, and ease of use. To effectively explore chemical space, a universal NMR experiment, a rationally designed fragment library, and a sample composition optimized for a maximal number of compounds and minimal measurement time are required. Here, we introduce a comprehensive method that enabled the efficient assembly of a high‐quality and diverse library containing nearly 4000 fragments and screening for target‐specific binders within days. At the core of the approach is a novel broadband relaxation‐edited NMR experiment that covers the entire chemical shift range of drug‐like 19F motifs in a single measurement. Our approach facilitates the identification of diverse binders and the fast ligandability assessment of new targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.