Objective. The evaluation of the long-term stability of ElectroCorticoGram (ECoG) signals is an important scientific question as new implantable recording devices can be used for medical purposes such as Brain-Computer Interface (BCI) or brain monitoring. Approach. The long-term clinical validation of wireless implantable multi-channel acquisition system for generic interface with neurons (WIMAGINE), a wireless 64-channel epidural ECoG recorder was investigated. The WIMAGINE device was implanted in two quadriplegic patients within the context of a BCI protocol. This study focused on the ECoG signal stability in two patients bilaterally implanted in June 2017 (P1) and in November 2019 (P2). Methods. The ECoG signal was recorded at rest prior to each BCI session resulting in a 32 month and in a 14 month follow-up for P1 and P2 respectively. State-of-the-art signal evaluation metrics such as root mean square (RMS), the band power (BP), the signal to noise ratio (SNR), the effective bandwidth (EBW) and the spectral edge frequency (SEF) were used to evaluate stability of signal over the implantation time course. The time-frequency maps obtained from task-related motor activations were also studied to investigate the long-term selectivity of the electrodes. Main results. Based on temporal linear regressions, we report a limited decrease of the signal average level (RMS), spectral distribution (BP) and SNR, and a remarkable steadiness of the EBW and SEF. Time-frequency maps obtained during motor imagery, showed a high level of discrimination 1 month after surgery and also after 2 years. Conclusions. The WIMAGINE epidural device showed high stability over time. The signal evaluation metrics of two quadriplegic patients during 32 months and 14 months respectively provide strong evidence that this wireless implant is well-suited for long-term ECoG recording. Significance. These findings are relevant for the future of implantable BCIs, and could benefit other patients with spinal cord injury, amyotrophic lateral sclerosis, neuromuscular diseases or drug-resistant epilepsy.
Objective. The article aims at addressing 2 challenges to step motor BCI out of laboratories: asynchronous control of complex bimanual effectors with large numbers of degrees of freedom, using chronic and safe recorders, and the decoding performance stability over time without frequent decoder recalibration. Approach. Closed-loop adaptive/incremental decoder training is one strategy to create a model stable over time. Adaptive decoders update their parameters with new incoming data, optimizing the model parameters in real time. It allows cross-session training with multiple recording conditions during closed loop BCI experiments. In the article, an adaptive tensor-based Recursive Exponentially Weighted Markov-Switching multi-Linear Model (REW-MSLM) decoder is proposed. REW-MSLM uses a Mixture of Expert (ME) architecture, mixing or switching independent decoders (experts) according to the probability estimated by a “gating” model. A Hidden Markov model approach is employed as gating model to improve the decoding robustness and to provide strong idle state support. The ME architecture fits the multi-limb paradigm associating an expert to a particular limb or action. Main results. Asynchronous control of an exoskeleton by a tetraplegic patient using a chronically implanted epidural electrocorticography (EpiCoG) recorder is reported. The stable over a period of 6 months (without decoder recalibration) 8-dimensional alternative bimanual control of the exoskeleton and its virtual avatar is demonstrated. Significance. Based on the long-term (>36 months) chronic bilateral epidural ECoG recordings in a tetraplegic (ClinicalTrials.gov, NCT02550522), we addressed the poorly explored field of asynchronous bimanual BCI. The new decoder was designed to meet to several challenges: the high-dimensional control of a complex effector in experiments closer to real-world behaviour (point-to-point pursuit versus conventional center-out tasks), with the ability of the BCI system to act as a stand-alone device switching between idle and control states, and a stable performance over a long period of time without decoder recalibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.