The bone marrow (BM) has been identified as a possible organ for T cell priming, yet the fundamental mechanisms of a polyclonal immune response in the BM remain unknown. We found that after intradermal injection of modified vaccinia Ankara virus, unexpected sources of newly primed polyclonal virus-specific CD8(+), but not CD4(+), T cells were localized in the BM and the draining lymph nodes (dLNs) prior to blood circulation. We identified neutrophils as the virus-carrier cells from the dermis to the BM. In both neutrophil-depleted and Ccr1(-/-) mice, virus-specific BM CD8(+) responses were lost. Myeloid antigen-presenting cells were required for BM CD8(+) T cell priming. A systems biology analysis of dLN and BM virus-specific CD8(+) T cells revealed distinct transcriptional and multifunctional profiles for cells primed in each organ. We provide direct evidence for how antigen is transported to the BM, providing a source of virus-specific memory CD8(+) T cells.
Particle-based drug delivery systems target active compounds to the hair follicle and may result in a better penetration and higher efficiency of compound uptake by skin resident cells. As previously proposed, such delivery systems could be important tools for vaccine delivery. In this study, we investigated the penetration of solid fluorescent 40 or 200 nm polystyrene nanoparticles (NPs) as well as virus particles in murine skin to further investigate the efficacy of transcutaneously (TC) applied particulate vaccine delivery route. We demonstrated that 40 and 200 nm NPs and modified vaccinia Ankara (MVA) expressing the green-fluorescent protein penetrated deeply into hair follicles and were internalized by perifollicular antigen-presenting cells (APCs). Fibered-based confocal microscopy analyses allowed visualizing in vivo particle penetration along the follicular duct, diffusion into the surrounding tissue, uptake by APCs and transport to the draining lymph nodes. The application of small particles, such as ovalbumin coding DNA or MVA, induced both humoral and cellular immune responses. Furthermore, TC applied MVA induced protection against vaccinia virus challenge. Our results strengthen the concept of TC targeting of cutaneous APCs by hair follicles and will contribute to the development of advanced vaccination protocols using NPs or viral vectors.
The potential of the skin immune system for the generation of both powerful humoral and cellular immune responses is now well established. However, the mechanisms responsible for the efficacy of skin antigen-presenting cells (APCs) during intradermal (ID) vaccination still remain to be elucidated. We have previously demonstrated in clinical trials that preferential targeting of Langerhans cells (LCs) by transcutaneous immunization shapes the immune response toward vaccine-specific CD8 T cells. Others have shown that ID inoculation of a vaccine, which targets dermal APCs, mobilizes both the cellular and humoral arms of immunity. Here, we investigated the participation of epidermal LCs in response to ID immunization. When human or mouse skin was injected ID with a particle-based vaccine, we observed significant modifications in the morphology of epidermal LCs and their mobilization to the dermis. We further established that this LC recruitment after ID administration was essential for the induction of antigen-specific CD8 T cells, but was, however, dispensable for the generation of specific CD4 T cells and neutralizing antibodies. Thus, epidermal and dermal APCs shape the outcome of the immune responses to ID vaccination. Their combined potential provides new avenues for the development of vaccination strategies against infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.