A literature survey identified 403 primary research publications that investigated the ecological effects of invasive alien insects and/or the mechanisms underlying these effects. The majority of these studies were published in the last 8 years and nearly two-thirds were carried out in North America. These publications concerned 72 invasive insect species, of which two ant species, Solenopsis invicta and Linepithema humile, accounted for 18% and 14% of the studies, respectively. Most publications investigated effects on native biodiversity at population or community level. Genetic effects and, to a lesser extent, effects on ecosystem services and processes were rarely explored. We review the effects caused by different insect invaders according to: their ecosystem roles, i.e. herbivores, predators, parasites, parasitoids and pollinators; the level of biological organisation at which they occur; and the direct and indirect mechanisms underlying these effects. The best documented effects occur in invasive ants, Eurasian forest herbivores invasive in North America, and honeybees. Impacts may occur through simple trophic interactions such as herbivory, predation or parasitism. Alien species may also affect native species and communities through more complex mechanisms such as competition for resources, disease transmission, apparent competition, or pollination disruption, among others. Finally, some invasive insects, particularly forest herbivores and ants, are known to affect ecosystem processes through cascading effects. We identify biases and gaps in our knowledge of ecological effects of invasive insects and suggest further opportunities for research.
Summary1. Herbivore regulation is one of the services provided by plant diversity in terrestrial ecosystems. It has been suggested that tree diversity decreases insect herbivory in forests, but recent studies have reported opposite patterns, indicating that tree diversity can trigger associational resistance or susceptibility. The mechanisms underlying the tree diversity-resistance relationship thus remain a matter of debate. 2. We assessed insect herbivory on pedunculate oak saplings (Quercus robur) in a large-scale experiment in which we manipulated tree diversity and identity by mixing oaks, birch and pine species. 3. Tree diversity at the plot scale had no effect on damage due to leaf chewers, but abundance of leaf miners decreased with increasing tree diversity. The magnitude of this associational resistance increased with host dilution, consistent with the 'resource concentration hypothesis'. 4. At a smaller scale, we estimated tree apparency as the difference in total height between focal oak saplings and their nearest neighbouring trees. Levels of oak infestation with leaf miners decreased significantly with decreasing tree apparency. As the probability of having taller neighbours increased with tree diversity, notably due to the increase in the proportion of faster growing nonhost trees, such as birches and pines, tree apparency may be seen as a 'hidden', sampling effect of tree diversity. 5. Synthesis. These findings suggest that greater host dilution and lower tree apparency contribute to associational resistance in young trees. They also highlight the importance of taking plant size into account as a covariate, to avoid misleading interpretations about the biodiversity-resistance relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.