Novel vaccines are urgently needed to reduce the burden of severe malaria. Using a differential whole-proteome screening method, we identified Plasmodium falciparum schizont egress antigen-1 (PfSEA-1), a 244-kilodalton parasite antigen expressed in schizont-infected red blood cells (RBCs). Antibodies to PfSEA-1 decreased parasite replication by arresting schizont rupture, and conditional disruption of PfSEA-1 resulted in a profound parasite replication defect. Vaccination of mice with recombinant Plasmodium berghei PbSEA-1 significantly reduced parasitemia and delayed mortality after lethal challenge with the Plasmodium berghei strain ANKA. Tanzanian children with antibodies to recombinant PfSEA-1A (rPfSEA-1A) did not experience severe malaria, and Kenyan adolescents and adults with antibodies to rPfSEA-1A had significantly lower parasite densities than individuals without these antibodies. By blocking schizont egress, PfSEA-1 may synergize with other vaccines targeting hepatocyte and RBC invasion.
SummaryVirtually all motile eukaryotic cilia and flagella have a '9+2' axoneme in which nine doublet microtubules surround two singlet microtubules. Associated with the central pair of microtubules are protein complexes that form at least seven biochemically and structurally distinct central pair projections. Analysis of mutants lacking specific projections has indicated that each may play a unique role in the control of flagellar motility. One of these is the C1d projection previously shown to contain the proteins FAP54, FAP46, FAP74 and FAP221/Pcdp1, which exhibits Ca 2+ -sensitive calmodulin binding. Here we report the isolation and characterization of a Chlamydomonas reinhardtii null mutant for FAP46. This mutant, fap46-1, lacks the C1d projection and has impaired motility, confirming the importance of this projection for normal flagellar movement. Those cells that are motile have severe defects in phototaxis and the photoshock response, underscoring a role for the C1d projection in Ca 2+ -mediated flagellar behavior. The data also reveal for the first time that the C1d projection is involved in the control of interdoublet sliding velocity. Our studies further identify a novel C1d subunit that we term C1d-87, give new insight into relationships between the C1d subunits, and provide evidence for multiple sites of calmodulin interaction within the C1d projection. These results represent significant advances in our understanding of an important but little studied axonemal structure.
The C1d projection of the central apparatus includes Pcdp1 and is required for ciliary motility. A combination of structural and functional studies shows that C1d is required for coordination of dynein activity on specific doublets and differentially affects the activity of both the outer and inner dynein arms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.