Bone marrow transplantation (BMT) has considerable potential for the treatment of malignancies, hemoglobinopathies, and autoimmune diseases, as well as the induction of transplantation allograft tolerance. Toxicities associated with standard preparative regimens for bone marrow transplantation, however, make this approach unacceptable for all but the most severe of these clinical situations. Here, we demonstrate that stable mixed hematopoietic cell chimerism and donor-specific tolerance can be established in miniature swine, using a relatively mild, non-myeloablative preparative regimen. We conditioned recipient swine with whole-body and thymic irradiation, and we depleted their T-cells by CD3 immunotoxin-treatment. Infusion of either bone marrow cells or cytokine-mobilized peripheral blood stem cells from leukocyte antigen-matched animals resulted in stable mixed chimerism, as detected by flow cytometry in the peripheral blood, thymus, and bone marrow, without any clinical evidence of graft-versus-host disease (GvHD). Long-term acceptance of donor skin and consistent rejection of third-party skin indicated that the recipients had developed donor-specific tolerance.
Mixed hematopoietic chimerism may provide a treatment for patients with nonmalignant hematologic diseases, and may tolerize patients to organ allografts without requiring chronic immunosuppression. However, the toxicity of the usual conditioning regimens has limited the clinical applicability of this approach. These regimens generally include some level of whole body irradiation (WBI), which is thought to facilitate engraftment either by making room for donor hematopoietic stem cells or by providing sufficient host immunosuppression to enable donor cells to engraft. Here, we have established mixed chimerism across both minor and major histocompatibility barriers in swine, by using high doses of peripheral blood stem cells in the absence of WBI. After mixed chimerism was established, swine leukocyte antigen-matched (SLA-matched) donor skin grafts were tolerated and maintained for a prolonged period, whereas third-party SLA-matched skin was rejected promptly. Donor-matched kidney allografts were also accepted without additional immunosuppression. Because of its low toxicity, this approach has potential for a wide range of clinical applications. Our data may indicate that niches for engrafting stem cells are filled by mass action and that WBI, which serves to empty some of these niches, can be omitted if the donor inoculum is sufficiently large and if adequate host T-cell depletion is achieved before transplant.
This protocol can achieve tolerance to the musculoskeletal elements of composite tissue allografts across an MHC barrier in miniature swine. Stable chimerism does not appear to be necessary for tolerance and may not be desirable because of the risk of GVHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.