Background: Bacterial adhesion is an important determinant of colonization and infection, including dental caries. The salivary scavenger receptor cysteine-rich glycoprotein gp-340, which mediates adhesion of Streptococcus mutans (implicated in caries), harbours three major size variants, designated gp-340 I to III, each specific to an individual saliva. Here we have examined the association of the gp-340 I to III polymorphisms with caries experience and adhesion of S. mutans.
Glycoprotein gp-340 aggregates bacteria in saliva as part of innate defence at mucosal surfaces. We have detected size- and glycoforms of gp-340 between human saliva samples (n = 7) and lung gp-340 from a proteinosis patient using antibodies and lectins in Western blots and ELISA measurements. Western blots of saliva samples, and of gp-340 purified, from the seven donors using a gp-340 specific antibody distinguished four gp-340 size variants, designated I to IV (n = 2,2,2 and 1). While saliva gp-340 variants I to III had single bands of increasing sizes, variant IV and lung gp-340 had double bands. Purified I to IV proteins all revealed a N-terminal sequence TGGWIP upon Edman degradation. Moreover, purified gp-340 from the seven donors and lung gp-340 shared N-glycans, sialylated Galbeta1-3GalNAc and (poly)lactosamine structures. However, the larger size gp-340 grouping II/III (n = 4) and smaller size grouping I/IV correlated with a secretor, Se(+), and a non secretor, Se(-), dependent glycoform of gp-340, respectively (p = 0.03). The Se(+) glycoforms contained ABH, Le(b), Le(y) and polylactosamine structures, while the Se(-) glycoforms lacked ABH antigens but expressed Le(a), Le(x) and lactosamine structures. By contrast, lung gp-340 completely lacked ABH, Le(a/b), Le(x/y) or sLe(x) structures. Gp-340 and secretor typing of saliva from additional donors (n = 29) showed gp-340 glycoforms I to IV for 6, 16, 4 and 0 donors, respectively, and 3 non-typeable donors, and verified that gp-340 glycoforms I and II/III correlate with Se(-) and Se(+) phenotypes, respectively (p < 0.0001). The glycoforms of saliva and lung gp-340 mediated differential aggregation of Le(b)- (Helicobacter pylori), sialylpolylactosamine- (Streptococcus suis) or sialic acid- (Streptococcus mutans) binding bacteria. In conclusion, variant size- and glycoforms of gp-340 are expressed by different individuals and may modulate the biological properties of gp-340 pertinent to health and disease.
Oral commensal Streptococcus gordonii proteolytically cleave the salivary PRP-1 polypeptide into an RGRPQ innate peptide. The Arg and Gln termini are crucial for RGRPQ-mediated ammonia production and proliferation by S. gordonii SK12 and adhesion inhibition and desorption by Actinomyces naeslundii T14V, respectively. Here we have applied (i) a multivariate approach using RGRPQ-related peptides varied at amino acids 2, 3, and 4 simultaneously and (ii) size and N-and C-terminal modifications of RGRPQ to generate structure activity information. While the N-terminal arginine motif mediated ammonia production independent of peptide size, other responses required more or less full-length peptide motifs. The motifs for adhesion inhibition and desorption were the same. The adhesion and proliferation motifs required similarily a hydrophobic/low polarity amino acid 4 but differentially a hydrophilic or hydrophobic character of amino acids 2/3, respectively; polar peptides with small/hydrophilic and hydrophilic amino acids 2 and 3, respectively, had high adhesion inhibition/desorption activity, and lipophilic peptides with large/hydrophobic amino acids 2 and 3 had high proliferation activity. Accordingly, while RIWWQ had increased proliferation but abolished adhesion/desorption activity, peptides designed with hydrophilic amino acids 2 and 3 were predicted to behave in the opposite way. Moreover, a RGRPQ mimetic for all three responses should mimic small hydrophilic, large nitrogen-containing, and hydrophobic/low polarity amino acids 2, 3, and 4, respectively. Peptides fulfilling these criteria were 1-1.6-fold improved in all three responses. Thus, both mimetics and peptides with differential proliferation and adhesion activities may be generated for evaluation in biofilm models.Saliva confers infection resistance and wound healing to oral tissue surfaces (1, 2). The saliva innate defense resides in general properties, such as clearance and pH, and specific innate (poly)peptide functions. These innate peptide functions control adhesion and colonization of commensal and pathogenic microorganisms as well as tissue homeostasis (1, 3, 4).Acidic, basic, and glycosylated proline-rich proteins (PRPs), 2 encoded by six genes on chromosome 12p13.2 (5), are abundant and polymorphic proteins in saliva (1, 6). Acidic PRPs mediate adhesion of commensal Streptococcus and Actinomyces species (7, 8), neutralize dietary tannins (polyphenols), and interact with calcium (1). These interactions occur through the C-terminal, proline-rich middle and phosporylated N-terminal domains, respectively (1). PRPs are subject to endogenous and bacterial proteolysis, generating a wide range of peptide derivatives in saliva (6, 9, 10). Both allelic PRP variants and small size peptides derived thereof coincide with susceptibility or resistance to caries (11,12). The allelic acidic PRP variant Db coincides with caries susceptibility and adhesion of Streptococcus mutans (12), implicated in caries. The other acidic PRP variants (e.g. PRP-1 and PRP-2) coincide...
BASEMENT TM is a distributed real-time architecture developed for vehicle internal use in the automotive industry. BASEMENT covers application development, as well as the hardware and software that provide execution and communication support. This paper gives an overview of the BASEMENT concept, as well as presenting two system realizations. The first realization is based on the commercial real-time kernel Rubus, while the second is an ultra-dependable architecture (DACAPO) with provisions for fault tolerance at various system levels. BASEMENT is designed for the automotive systems of the future. These systems will be required to simultaneously handle multiple safety critical functions and a large number of less critical functions. All of these features are to be provided at a production cost substantially lower than that of current systems, and, at the same time, with a reliability allowing vehicles to be built without mechanical backup systems, even for safety critical subsystems such as braking and steering. The key constituents of the concept are: 1) resource sharing (multiplexing) of processing and communication resources, 2) a guaranteed real-time service for safety critical applications, 3) a best-effort service for nonsafety critical applications, 4) a communication infrastructure providing efficient communication between distributed devices, 5) a program development methodology allowing resource independent and application oriented development of application software, and 6) a straightforward and well-defined operation principle enabling efficient fault tolerance mechanisms to be employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.