The central nervous system (CNS) controls skeletal muscles by the recruitment of motor units (MUs). Understanding MU function is critical in the diagnosis of neuromuscular diseases, exercise physiology and sports, and rehabilitation medicine. Recording and analyzing the MUs’ electrical depolarization is the basis for state-of-the-art methods. Ultrafast ultrasound is a method that has the potential to study MUs because of the electrical depolarizations and consequent mechanical twitches. In this study, we evaluate if single MUs and their mechanical twitches can be identified using ultrafast ultrasound imaging of voluntary contractions. We compared decomposed spatio-temporal components of ultrasound image sequences against the gold standard needle electromyography. We found that 31% of the MUs could be successfully located and their firing pattern extracted. This method allows new non-invasive opportunities to study mechanical properties of MUs and the CNS control in neuromuscular physiology.
The central nervous system coordinates movement through forces generated by motor units (MUs) in skeletal muscles. To analyze MUs function is essential in sports, rehabilitation medicine applications, and neuromuscular diagnostics. The MUs and their function are studied using electromyography. Typically, these methods study only a small muscle volume (1 mm 3) or only a superficial (<1 cm) volume of the muscle. Here we introduce a method to identify so-called mechanical units, i.e., the mechanical response of electrically active MUs, in the whole muscle (4 × 4 cm, cross-sectional) under voluntary contractions by ultrafast ultrasound imaging and spatiotemporal decomposition. We evaluate the performance of the method by simulation of active MUs' mechanical response under weak contractions. We further test the experimental feasibility on eight healthy subjects. We show the existence of mechanical units that contribute to the tissue dynamics in the biceps brachii at low force levels and that these units are similar to MUs described by electromyography with respect to the number of units, territory sizes, and firing rates. This study introduces a new potential neuromuscular functional imaging method, which could be used to study a variety of questions on muscle physiology that previously were difficult or not possible to address.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.