Objectives:The objective of this study was to determine the potential chest injury benefits and influence on occupant kinematics of a belt system with independent control of the shoulder and lap portions.Methods: This article investigates the kinematics and dynamics of human surrogates in 35 km/h impacts with 2 different restraints: a pretensioning (PT), force-limiting (FL) seat belt, a reference belt system, and a concept design with a split buckle consisting (SB) of 2 separate shoulder and lap belt bands. The study combines mathematical simulations with the THOR dummy and THUMS human body model, and mechanical tests with the THOR dummy and 2 postmortem human surrogate (PMHS) tests of similar age (39 and 42 years) and anthropometry (62 kg, 181 cm vs. 60 kg, 171.5 cm). The test setup consisted of a rigid metallic frame representing a standard seating position of a right front passenger. The THOR dummy model predictions were compared to the mechanical THOR dummy test results. The THUMS-predicted number of fractured ribs were compared to the number of fractured ribs in the PMHS. Results: THOR sled tests showed that the SB seat belt system decreased chest deflection significantly without increasing the forward displacement of the head. The THOR model and the THOR physical dummy predicted a 13-and 7-mm reduction in peak chest deflection, respectively. Peak diagonal belt force in the mechanical test with the reference belt was 5,582 N and the predicted force was 4,770 N. The THOR model also predicted lower belt forces with the SB system than observed in the tests (5,606 vs. 6,085 N). THUMS predicted somewhat increased head displacement for the SB system compared to the reference system. Peak diagonal force with the reference belt was 4,000 N and for the SB system it was 5,200 N. The PMHS test with the SB belt resulted in improved kinematics and a smaller number of rib fractures (2 vs. 5 fractures) compared to the reference belt. Conclusion:Concepts for a belt system that can reduce the load on the chest of the occupant in a crash and thereby reduce the number of injured occupants, in particular the elderly, was proposed.
In future fully automated vehicles, sleeping or resting will be desirable during a drive. While a horizontal position currently appears infeasible, a relaxed seating position with a reclined seatback and an inclined seat pan which enables a safe, comfortable position for sleeping or resting is possible. However, the inclined seat pan increases the forces and moments acting on the lumbar spine of the occupant and thereby the risk of lumbar vertebra fractures in a frontal crash. An energy management system integrated into the longitudinal seat adjustment (a seat track load limiter: STLL) that can reduce this risk should be investigated. When evaluating the injury reduction potential of a new restraint system such as a STLL it is important to include variations in both occupant size and crash severity. Otherwise, there is a risk of sub-optimizing, that is, the restraint system is only working for a limited number of situations. The restraint systems addressing these variations are normally referred to as adaptive restraint systems. The first objective of the study is to develop an activation strategy (adaptive release time of the STLL) for different crash severities and occupant sizes, making full use of the available stroke distance without bottoming out the STLL. The second objective is to evaluate the potential of the adaptive STLL to reduce the risk of lumbar vertebra fractures by comparing it to 1) a fixed seat and 2) a passive version of the STLL. Simulated frontal impacts were performed with two male SAFER human body models (HBMs) as occupant surrogates: mid-sized (80 kg and 1.8 m) and large (130 kg and 1.9 m). Three crash pulse severity levels were evaluated: low (40 km/h), medium (50 km/h), and high (56 km/h) impact speeds. The fracture risk was evaluated for the five lumbar vertebrae (L1–L5) in three different seat conditions: 1) a seat fixed to the sled, 2) a passive STLL that moves when a given force is exceeded, and 3) an adaptive STLL which moves at a time that depends on the occupant mass and crash pulse severity. The risk for lumbar vertebra fracture increased with crash pulse severity, while HBM size had no effect on risk. For all conditions, the passive STLL reduced injury risks compared to the fixed seat, and the adaptive STLL reduced risk even further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.