Restrictions on roaming Until the past century or so, the movement of wild animals was relatively unrestricted, and their travels contributed substantially to ecological processes. As humans have increasingly altered natural habitats, natural animal movements have been restricted. Tucker et al. examined GPS locations for more than 50 species. In general, animal movements were shorter in areas with high human impact, likely owing to changed behaviors and physical limitations. Besides affecting the species themselves, such changes could have wider effects by limiting the movement of nutrients and altering ecological interactions. Science , this issue p. 466
Summary 1.Animal migration has long intrigued scientists and wildlife managers alike, yet migratory species face increasing challenges because of habitat fragmentation, climate change and over-exploitation. Central to the understanding migratory species is the objective discrimination between migratory and nonmigratory individuals in a given population, quantifying the timing, duration and distance of migration and the ability to predict migratory movements. 2. Here, we propose a uniform statistical framework to (i) separate migration from other movement behaviours, (ii) quantify migration parameters without the need for arbitrary cut-off criteria and (iii) test predictability across individuals, time and space. 3. We first validated our novel approach by simulating data based on established theoretical movement patterns. We then formulated the expected shapes of squared displacement patterns as nonlinear models for a suite of movement behaviours to test the ability of our method to distinguish between migratory movement and other movement types. 4. We then tested our approached empirically using 108 wild Global Positioning System (GPS)-collared moose Alces alces in Scandinavia as a study system because they exhibit a wide range of movement behaviours, including resident, migrating and dispersing individuals, within the same population. Applying our approach showed that 87% and 67% of our Swedish and Norwegian subpopulations, respectively, can be classified as migratory. 5. Using nonlinear mixed effects models for all migratory individuals we showed that the distance, timing and duration of migration differed between the sexes and between years, with additional individual differences accounting for a large part of the variation in the distance of migration but not in the timing or duration. Overall, the model explained most of the variation (92%) and also had high predictive power for the same individuals over time (69%) as well as between study populations (74%). 6. The high predictive ability of the approach suggests that it can help increase our understanding of the drivers of migration and could provide key quantitative information for understanding and managing a broad range of migratory species.
BackgroundThe geographical expansion of the tick Ixodes ricinus in northern Europe is a serious concern for animal and human health. The pathogen Anaplasma phagocytophilum is transmitted by ticks and causes emergences of tick-borne fever (anaplasmosis) in livestock. The transmission dynamics of the different ecotypes of A. phagocytophilum in the ecosystems is only partly determined. Red deer and roe deer contribute to circulation of different ecotypes of A. phagocytophilum in continental Europe, while the role of moose for circulation of different ecotypes is not fully established but an important issue in northern Europe.MethodsWe determined infection prevalence and ecotypes of A. phagocytophilum in moose (n = 111), red deer (n = 141), roe deer (n = 28) and questing ticks (n = 9241) in Norway.ResultsAs previously described, red deer was exclusively linked to circulation of ecotype I, while roe deer was exclusively linked to circulation of ecotype II. Surprisingly, we found 58% ecotype I (n = 19) and 42% of ecotype II (n = 14) in moose. Both ecotypes were found in questing ticks in areas with multiple cervid species present, while only ecotype I was found in ticks in a region with only red deer present. Hence, the geographical distribution of ecotypes in ticks followed the distribution of cervid species present in a given region and their link to ecotype I and II.ConclusionsMoose probably function as reservoirs for both ecotype I and II, indicating that the ecotypes of A. phagocytophilum are not entirely host-specific and have overlapping niches. The disease hazard depends also on both host abundance and the number of immature ticks fed by each host. Our study provides novel insights in the northern distribution and expansion of tick-borne fever.
Chronic wasting disease (CWD) persists in cervid populations of North America and in 2016 was detected for the first time in Europe in a wild reindeer in Norway. We report the detection of CWD in 3 moose (Alces alces) in Norway, identified through a large scale surveillance program. The cases occurred in 13–14-year-old female moose, and we detected an abnormal form of prion protein (PrPSc) in the brain but not in lymphoid tissues. Immunohistochemistry revealed that the moose shared the same neuropathologic phenotype, characterized by mostly intraneuronal deposition of PrPSc. This pattern differed from that observed in reindeer and has not been previously reported in CWD-infected cervids. Moreover, Western blot revealed a PrPSc type distinguishable from previous CWD cases and from known ruminant prion diseases in Europe, with the possible exception of sheep CH1641. These findings suggest that these cases in moose represent a novel type of CWD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.