The K103N substitution is a frequently observed HIV-1 RT mutation in patients who do not respond to combinationtherapy. The drugs Efavirenz, MSC194 and PNU142721 belong to the recent generation of NNRTIs characterized by an improved resistance profile to the most common single point mutations within HIV-1 RT, including the K103N mutation. In the present study we present structural observations from Efavirenz in complex with wild-type protein and the K103N mutant and PNU142721 and MSC194 in complex with the K103N mutant. The structures unanimously indicate that the K103N substitution induces only minor positional adjustments of the three inhibitors and the residues lining the binding pocket. Thus, compared to the corresponding wild-type structures, these inhibitors bind to the mutant in a conservative mode rather than through major rearrangements. The structures implicate that the reduced inhibitory efficacy should be attributed to the changes in the chemical environment in the vicinity of the substituted N103 residue. This is supported by changes in hydrophobic and electrostatic interactions to the inhibitors between wild-type and K103N mutant complexes. These potent inhibitors accommodate to the K103N mutation by forming new interactions to the N103 side chain. Our results are consistent with the proposal by Hsiou et al. [Hsiou, Y., Ding, J., Das, K., Clark, A.D. Jr, Boyer, P.L., Lewi, P., Janssen, P.A., Kleim, J.P., Rosner, M., Hughes, S.H. & Arnold, E. (2001) J. Mol. Biol. 309, 437-445] that inhibitors with good activity against the K103N mutant would be expected to have favorable interactions with the mutant asparagines side chain, thereby compensating for resistance caused by stabilization of the mutant enzyme due to a hydrogen-bond network involving the N103 and Y188 side chains.Keywords: drug-resistance; HIV; NNRTI; reverse transcriptase.The use of highly active antiretroviral therapy (HAART) involving multidrug combinations has significantly reduced the death rates of HIV-1 infected individuals receiving such treatment [1]. Inhibitors of the HIV-1 reverse transcriptase (RT) constitute a cornerstone in this therapy and are commonly used in combination with inhibitors of the HIV-1 protease. The RT inhibitors belong to two classes, the nucleoside inhibitors and the non-nucleoside inhibitors (NNRTI). Whereas the NRTIs are nucleoside analogues with chain-terminating properties and affinity to active site residues, the NNRTIs include a wide range of series of chemical compounds characterized by noncompetitive binding to an allosteric site some 10 Å away from the active site. Structural comparison of RT in complex with template/primer and NNRTIs together with native RT complexes have shown that the NNRTIs inhibit the polymerase activity through long-range and short-range structural distortions in several of the RT subdomains. The distortions involve repositioning of residues in the nonnucleoside binding pocket (NNIBP) that impose steric impediments on the thumb subdomain flexibility forcing it to remain in the ...
Phenylethylthiazolylthiourea (PETT) derivatives have been identified as a new series of non-nucleoside inhibitors of HIV-1 RT. Structure-activity relationship studies of this class of compounds resulted in the identification of N-[2-(2-pyridyl)ethyl]-N'-[2-(5-bromopyridyl)]-thiourea hydrochloride (trovirdine; LY300046.HCl) as a highly potent anti-HIV-1 agent. Trovirdine is currently in phase one clinical trials for potential use in the treatment of AIDS. Extension of these structure-activity relationship studies to identify additional compounds in this series with improved properties is ongoing. A part of this work is described here. Replacement of the two aromatic moieties of the PETT compounds by various substituted or unsubstituted heteroaromatic rings was investigated. In addition, the effects of multiple substitution in the phenyl ring were also studied. The antiviral activities were determined on wild-type and constructed mutants of HIV-1 RT and on wild-type HIV-1 and mutant viruses derived thereof, Ile100 and Cys181, in cell culture assays. Some selected compounds were determined on double-mutant viruses, HIV-1 (Ile 100/Asn103) and HIV-1 (Ile100/Cys181). A number of highly potent analogs were synthesized. These compounds displayed IC50's against wild-type RT between 0.6 and 5 nM. In cell culture, these agents inhibited wild-type HIV-1 with ED50's between 1 and 5 nM in MT-4 cells. In addition, these derivatives inhibited mutant HIV-1 RT (Ile 100) with IC50's between 20 and 50 nM and mutant HIV-1 RT (Cys 181) with IC50's between 4 and 10 nM, and in cell culture they inhibited mutant HIV-1 (Ile100) with ED50's between 9 and 100 nM and mutant HIV-1 (Cys181) with ED50's between 3 and 20 nM.
The further development of allosteric HIV-1 RT inhibitors in the urea analogue series of PETT (phenylethylthiazolylthiourea) derivatives is described here. The series includes derivatives with an ethyl linker (1-5) and racemic (6-16) and enantiomeric (17-20) cis-cyclopropane compounds. The antiviral activity was determined both at the RT level and in cell culture on both wild-type and mutant forms of HIV-1. Most compounds have anti-HIV-1 activity on the wt in the nanomolar range. Resistant HIV-1 was selected in vitro for some of the compounds, and the time for resistant HIV-1 to develop was longer for urea-PETT compounds than it was for reference compounds. Preliminary pharmacokinetics in rats showed that compound 18 is orally bioavailable and penetrates well into the brain. The three-dimensional structure of complexes between HIV-1 RT and two enantiomeric compounds (17 and 18) have been determined. The structures show similar binding in the NNI binding pocket. The propionylphenyl moieties of both inhibitors show perfect stacking to tyrosine residues 181 and 188. The cyclopropyl moiety of the (+)-enantiomer 18 exhibits optimal packing distances for the interactions with leucine residue 100 and valine residue 179.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.