Cystometries were performed in normal rats and in rats with bladder hypertrophy due to infravesical outflow obstruction. Investigations were performed in the presence and absence of anesthesia. pentobarbital anesthesia depressed spontaneous contractile activity in the bladder and the micturition reflex, thereby making measurements of other variables, such as bladder capacity and residual volume, impossible. In conscious animals infravesical outflow obstruction led to development of increased bladder capacity, marked residual volume, and unstable detrusor contractions. The model seems to be well suited for further evaluation of the mechanisms involved in the development of detrusor instability and the responses to pharmacological treatment.
Human detrusor strips were obtained from patients undergoing reimplantation of ureters because of reflux, transvesical prostatectomy, or cysto-urethrectomy en bloc because of bladder malignancy. The strips were electrically stimulated. A frequency-dependent contractant response was obtained that was potentiated by physostigmine and abolished by tetrodotoxin. The maximum response approximately equaled that of acetylcholine in a maximum concentration. In most bladder preparations from patients without known functional bladder disturbances, atropine (0.01 to 0.1 microM) had a marked inhibitory effect, and at concentrations exceeding 1 microM the blockade was complete. In strips obtained from patients undergoing transvesical prostatectomy, and who also had a cystometrically verified unstable bladder, there was a varying degree of atropine resistance, with some preparations showing a 50 per cent resistance to atropine. Prazosin, phentolamine, yohimbine, guanethidine, clonidine, and noradrenaline had no consistent effects on the electrically induced bladder contraction. Nifedipine and nimodipine caused a maximum of 65 per cent inhibition of the response. Addition of nimodipine to atropine-resistant strips when maximum atropine inhibition had been reached abolished the contractions. Omitting calcium from the bath solution rapidly abolished the electrically induced contraction. It is suggested that in the normal human bladder the contraction induced by electrical stimulation is mainly atropine sensitive. However, in the functionally disturbed bladder, part of the bladder contraction is atropine resistant, a finding that may have clinical implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.