In the search to understand the functional capabilities and limitations of fused deposition modelling (FDM) manufactured components, control over their structural behaviour is crucial. For example, voids introduced during the production phase are a large contributor to anisotropy, yet the magnitude of this contribution remains unquantified. As a baseline model for quantifying strength reduction due to process-induced voids, a statistical method for evaluation of the minimum residual (net) cross section is proposed and tested. Our new method serves to predict the reduction in ultimate tensile strength of transversely printed specimens relative to solid or longitudinally printed specimens, based on void sizes identified from microscopy images of the centre plane of a tensile specimen. ImageJ is used to identify void sizes from the microscopy images, and residual cross sections are determined using a bit counting MATLAB script. From the distribution of residual cross sections, the weakest link for a given sample size is estimated. The accuracy of the proposed method is determined through comparison with experimental test data for samples of polylactic acid (PLA). The results reveal a close yet slightly under-predicted strength estimate, which for the case considered predicted approximately 5 MPa (12%) lower strength than observed in the experiments. Based on our findings, we have established evidence that the anisotropic behaviour of FDM specimens in PLA can to a large extent be explained by the reduction in residual cross section. This implies that other effects such as fracture mechanics and atomic diffusion of polymer chains play a secondary role for the phenomena observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.