Heme iron exacerbates oxidant damage by catalyzing the production of free radicals. Heme oxygenase is the rate-limiting enzyme involved in heme catabolism. An inducible form of heme oxygenase, heme oxygenase-1 (HO-1), is upregulated in oxidant and inflammatory settings, and recent work suggests that HO-1 induction may serve a protective function against oxidant injury. The ability of the endogenous inflammatory mediators, interleukin (IL)-1α, tumor necrosis factor-α (TNF-α), and IL-6, to enhance HO-1 expression in cultured human endothelial cells was examined in this study. HO-1 mRNA and protein expression were upregulated by IL-1α and TNF-α exposure but not by IL-6. Induction of HO-1 mRNA by IL-1α and TNF-α occurred in a concentration- and time-dependent fashion, with maximal expression occurring by 4 h for both cytokines. Induction depended on protein synthesis and occurred at the transcriptional level. Inhibition of the AP-1 transcription factor with curcumin decreased the cytokine induction of HO-1 mRNA, suggesting the involvement of this transcription factor in cytokine signaling of HO-1. The results of this study indicate that the endogenous inflammatory cytokines IL-1α and TNF-α induce HO-1 in endothelial cells, providing further evidence that HO-1 may be an important cellular response to inflammatory stress.
Heme oxygenase-1 (HO-1), an enzyme important in protection against oxidant stress, is induced in human vascular endothelial cells by the cytokines tumor necrosis factor-α (TNF-α) and interleukin-1α (IL-1α). However, the signaling mediators that regulate the induction are not known. This study examined the involvement of protein kinase C (PKC), phospholipase A2(PLA2), calcium, and oxidants in cytokine induction of HO-1. Acute exposure to the PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated HO-1 mRNA. However, prolonged exposure, which downregulates most PKC isoforms, blocked induction of HO-1 mRNA by IL-1α and TNF-α. Additionally, the phosphatase inhibitors okadaic acid and calyculin enhanced cytokine induction of HO-1. Mepacrine, a PLA2 inhibitor, prevented HO-1 induction by cytokine, suggesting a role for arachidonate, the product of PLA2hydrolysis of phospholipids, in HO-1 expression. The intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM) blocked cytokine induction of HO-1. Paradoxically, the calcium ionophore A-23187 prevented HO-1 induction by cytokine but not by PMA. Finally, the oxidant scavenger N-acetylcysteine inhibited HO-1 induction by cytokines. These results demonstrate that TNF-α and IL-1α induction of HO-1 requires PKC-mediated phosphorylation and PLA2 activation as well as oxidant generation.
Stenosis is a major cause of failure of hemodialysis vascular grafts and is primarily caused by neointimal hyperplasia (NH) at the anastomoses. The objective of this article is to provide a scientific review of the biology underlying this disorder and a critical review of the state-of-the-art investigational preventive strategies in order to stimulate further research in this exciting area. The histology of the NH shows myofibroblasts (that are probably derived from adventitial fibroblasts), extracellular matrices, pro-inflammatory cells including foreign-body giant cells, a variety of growth factors and cytokines, and neovasculature. The contributing factors of the pathogenesis of NH include surgical trauma, bioincompatibility of the synthetic graft, and the various mechanical stresses that result from luminal hypertension and compliance mismatch between the vessel wall and graft. These mechanical stimuli are focal in nature and may have a significant influence on the preferential localization of the NH. Novel mechanical graft designs and local drug delivery strategies show promise in animal models in preventing graft NH development. Successful prevention of graft stenosis would provide a superior alternative to the native fistula as hemodialysis vascular access.
Intimal hyperplasia and stenosis are often cited as causes of arteriovenous fistula maturation failure, but definitive evidence is lacking. We examined the associations among preexisting venous intimal hyperplasia, fistula venous stenosis after creation, and clinical maturation failure. The Hemodialysis Fistula Maturation Study prospectively observed 602 men and women through arteriovenous fistula creation surgery and their postoperative course. A segment of the vein used to create the fistula was collected intraoperatively for histomorphometric examination. On ultrasounds performed 1 day and 2 and 6 weeks after fistula creation, we assessed fistula venous stenosis using pre-specified criteria on the basis of ratios of luminal diameters and peak blood flow velocities at certain locations along the vessel. We determined fistula clinical maturation using criteria for usability during dialysis. Preexisting venous intimal hyperplasia, expressed per 10% increase in a hyperplasia index (range of 0%-100%), modestly associated with lower fistula blood flow rate (relative change, -2.5%; 95% confidence interval [95% CI], -4.6% to -0.4%; =0.02) at 6 weeks but did not significantly associate with stenosis (odds ratio [OR], 1.07; 95% CI, 1.00 to 1.16;=0.07) at 6 weeks or failure to mature clinically without procedural assistance (OR, 1.07; 95% CI, 0.99 to 1.15; =0.07). Fistula venous stenosis at 6 weeks associated with maturation failure (OR, 1.98; 95% CI, 1.25 to 3.12;=0.004) after controlling for case mix factors, dialysis status, and fistula location. These findings suggest that postoperative fistula venous stenosis associates with fistula maturation failure. Preoperative venous hyperplasia may associate with maturation failure but if so, only modestly.
The arteriovenous fistula (AVF) is the preferred form of vascular access for maintenance hemodialysis, but it often fails to mature to become clinically usable, likely due to aberrant hemodynamic forces. A robust pipeline for serial assessment of hemodynamic parameters and subsequent lumen cross-sectional area changes has been developed and applied to a data set from contrast-free MRI of a dialysis patient’s AVF collected over a period of months after AVF creation surgery. Black-blood MRI yielded images of AVF lumen geometry, while cine phase-contrast MRI provided volumetric flow rates at the in-flow and out-flow locations. Lumen geometry and flow rates were used as inputs for computational fluid dynamic (CFD) modeling to provide serial wall shear stress (WSS), WSS gradient, and oscillatory shear index profiles. The serial AVF lumen geometries were co-registered at 1-mm intervals using respective lumen centerlines, with the anastomosis as an anatomical landmark. Lumen enlargement was limited at the vein region near the anastomosis and a downstream vein valve, potentially attributed to a physical inhibition of wall expansion at those sites. This work is the first serial and detail study of lumen and hemodynamic changes in human AVF using MRI and CFD. This novel protocol will be used for a multicenter prospective study to identify critical hemodynamic factors that contribute to AVF maturation failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.