Inhibitors of apoptosis proteins (IAPs) are a highly conserved class of multifunctional proteins. Rac1 is a well‐studied Rho GTPase that controls numerous basic cellular processes. While the regulation of nucleotide binding to Rac1 is well understood, the molecular mechanisms controlling Rac1 degradation are not known. Here, we demonstrate X‐linked IAP (XIAP) and cellular IAP1 (c‐IAP1) directly bind to Rac1 in a nucleotide‐independent manner to promote its polyubiquitination at Lys147 and proteasomal degradation. These IAPs are also required for degradation of Rac1 upon CNF1 toxin treatment or RhoGDI depletion. Consistently, downregulation of XIAP or c‐IAP1 by various strategies led to an increase in Rac1 protein levels in primary and tumour cells, leading to an elongated morphology and enhanced cell migration. Further, XIAP counteracts Rac1‐dependent cellular polarization in the developing zebrafish hindbrain and promotes the delamination of neurons from the normal tissue architecture. These observations unveil an evolutionarily conserved role of IAPs in controlling Rac1 stability thereby regulating the plasticity of cell migration and morphogenesis.
Alpha-synuclein (ASYN) is a major constituent of the typical protein aggregates observed in several neurodegenerative diseases that are collectively referred to as synucleinopathies. A causal involvement of ASYN in the initiation and progression of neurological diseases is suggested by observations indicating that single-point (e.g., A30P, A53T) or multiplication mutations of the gene encoding for ASYN cause early onset forms of Parkinson's disease (PD). The relative regional specificity of ASYN pathology is still a riddle that cannot be simply explained by its expression pattern. Also, transgenic over-expression of ASYN in mice does not recapitulate the typical dopaminergic neuronal death observed in PD. Thus, additional factors must contribute to ASYN-related toxicity. For instance, synucleinopathies are usually associated with inflammation and elevated levels of oxidative stress in affected brain areas. In turn, these conditions favor oxidative modifications of ASYN. Among these modifications, nitration of tyrosine residues, formation of covalent ASYN dimers, as well as methionine sulfoxidations are prominent examples that are observed in post-mortem PD brain sections. Oxidative modifications can affect ASYN aggregation, as well as its binding to biological membranes. This would affect neurotransmitter recycling, mitochondrial function and dynamics (fission/ fusion), ASYN's degradation within a cell and, possibly, the transfer of modified ASYN to adjacent cells. Here, we propose a model on how covalent modifications of ASYN link energy stress, altered proteostasis, and oxidative stress, three major pathogenic processes involved in PD progression. Moreover, we hypothesize that ASYN may act physiologically as a catalytically regenerated scavenger of oxidants in healthy cells, thus performing an important protective role prior to the onset of disease or during aging.
Safety sciences and the identification of chemical hazards have been seen as one of the most immediate practical applications of human pluripotent stem cell technology. Protocols for the generation of many desirable human cell types have been developed, but optimization of neuronal models for toxicological use has been astonishingly slow, and the wide, clinically important field of peripheral neurotoxicity is still largely unexplored. A two-step protocol to generate large lots of identical peripheral human neuronal precursors was characterized and adapted to the measurement of peripheral neurotoxicity. High content imaging allowed an unbiased assessment of cell morphology and viability. The computational quantification of neurite growth as a functional parameter highly sensitive to disturbances by toxicants was used as an endpoint reflecting specific neurotoxicity. The differentiation of cells toward dorsal root ganglia neurons was tracked in relation to a large background data set based on gene expression microarrays. On this basis, a peripheral neurotoxicity (PeriTox) test was developed as a first toxicological assay that harnesses the potential of human pluripotent stem cells to generate cell types/tissues that are not otherwise available for the prediction of human systemic organ toxicity. Testing of more than 30 chemicals showed that human neurotoxicants and neurite growth enhancers were correctly identified. Various classes of chemotherapeutic agents causing human peripheral neuropathies were identified, and they were missed when tested on human central neurons. The PeriTox test we established shows the potential of human stem cells for clinically relevant safety testing of drugs in use and of new emerging candidates. STEM CELLS TRANSLATIONAL MEDICINE 2016;5:476-487 SIGNIFICANCEThe generation of human cells from pluripotent stem cells has aroused great hopes in biomedical research and safety sciences. Neurotoxicity testing is a particularly important application for stem cell-derived somatic cells, as human neurons are hardly available otherwise. Also, peripheral neurotoxicity has become of major concern in drug development for chemotherapy. The first neurotoxicity test method was established based on human pluripotent stem cell-derived peripheral neurons. The strategies exemplified in the present study of reproducible cell generation, cell function-based test system establishment, and assay validation provide the basis for a drug safety assessment on cells not available otherwise.
BackgroundMetastasis is a process by which cancer cells learn to form satellite tumors in distant organs and represents the principle cause of death of patients with solid tumors. NSCLC is the most lethal human cancer due to its high rate of metastasis.Methodology/Principal FindingsLack of a suitable animal model has so far hampered analysis of metastatic progression. We have examined c-MYC for its ability to induce metastasis in a C-RAF-driven mouse model for non-small-cell lung cancer. c-MYC alone induced frank tumor growth only after long latency at which time secondary mutations in K-Ras or LKB1 were detected reminiscent of human NSCLC. Combination with C-RAF led to immediate acceleration of tumor growth, conversion to papillary epithelial cells and angiogenic switch induction. Moreover, addition of c-MYC was sufficient to induce macrometastasis in liver and lymph nodes with short latency associated with lineage switch events. Thus we have generated the first conditional model for metastasis of NSCLC and identified a gene, c-MYC that is able to orchestrate all steps of this process.Conclusions/SignificancePotential markers for detection of metastasis were identified and validated for diagnosis of human biopsies. These markers may represent targets for future therapeutic intervention as they include genes such as Gata4 that are exclusively expressed during lung development.
Inhibitor of apoptosis proteins (IAP) are evolutionarily conserved anti-apoptotic regulators. C-RAF protein kinase is a direct RAS effector protein, which initiates the classical mitogen-activated protein kinase (MAPK) cascade. This signalling cascade mediates diverse biological functions, such as cell growth, proliferation, migration, differentiation and survival. Here we demonstrate that XIAP and c-IAPs bind directly to C-RAF kinase and that siRNA-mediated silencing of XIAP and c-IAPs leads to stabilization of C-RAF in human cells. XIAP binds strongly to C-RAF and promotes the ubiquitylation of C-RAF in vivo through the Hsp90-mediated quality control system, independently of its E3 ligase activity. In addition, XIAP or c-IAP-1/2 knockdown cells showed enhanced cell migration in a C-RAF-dependent manner. XIAP promotes binding of CHIP (carboxy terminal Hsc70-interacting protein), a chaperone-associated ubiquitin ligase, to the C-RAF-Hsp90 complex in vivo. Interfering with CHIP expression resulted in stabilization of C-RAF and enhanced cell migration, as observed in XIAP knockdown cells. Our data show an unexpected role of XIAP and c-IAPs in the turnover of C-RAF protein, thereby modulating the MAPK signalling pathway and cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.