BackgroundAdverse drug reactions and lack of therapeutic efficacy associated with currently prescribed pharmacotherapeutics may be attributed, in part, to inter-individual variability in drug metabolism. Studies on the pharmacogenetics of Cytochrome P450 (CYP) enzymes offer insight into this variability. The objective of this study was to compare the AmpliChip CYP450 Test® (AmpliChip) to alternative genotyping platforms for phenotype prediction of CYP2C19 and CYP2D6 in a representative cohort of the South African population.MethodsAmpliChip was used to screen for thirty-three CYP2D6 and three CYP2C19 alleles in two different cohorts. As a comparison cohort 2 was then genotyped using a CYP2D6 specific long range PCR with sequencing (CYP2D6 XL-PCR + Sequencing) platform and a PCR-RFLP platform for seven CYP2C19 alleles.ResultsEven though there was a low success rate for the AmpliChip, allele frequencies for both CYP2D6 and CYP2C19 were very similar between the two different cohorts. The CYP2D6 XL-PCR + Sequencing platform detected CYP2D6*5 more reliably and could correctly distinguish between CYP2D6*2 and *41 in the Black African individuals. Alleles not covered by the AmpliChip were identified and four novel CYP2D6 alleles were also detected. CYP2C19 PCR-RFLP identified CYP2C19*9,*15, *17 and *27 in the Black African individuals, with *2, *17 and *27 being relatively frequent in the cohort. Eliminating mismatches and identifying additional alleles will contribute to improving phenotype prediction for both enzymes. Phenotype prediction differed between platforms for both genes.ConclusionComprehensive genotyping of CYP2D6 and CYP2C19 with the platforms used in this study, would be more appropriate than AmpliChip for phenotypic prediction in the South African population. Pharmacogenetically important novel alleles may remain undiscovered when using assays that are designed according to Caucasian specific variation, unless alternate strategies are utilised.
Captive management of ex situ populations of endangered species is traditionally based on pedigree information derived from studbook data. However, molecular methods could provide a powerful set of complementary tools to verify studbook records and also contribute to improving the understanding of the genetic status of captive populations. Here, we compare the utility of single nucleotide polymorphisms (SNPs) and microsatellites (MS) and two analytical methods for assigning parentage in ten families of captive African penguins held in South African facilities. We found that SNPs performed better than microsatellites under both analytical frameworks, but a combination of all markers was most informative. A subset of combined SNP (n = 14) and MS loci (n = 10) provided robust assessments of parentage. Captive or supportive breeding programs will play an important role in future African penguin conservation efforts as a source of individuals for reintroduction. Cooperation among these captive facilities is essential to facilitate this process and improve management. This study provided us with a useful set of SNP and MS markers for parentage and relatedness testing among these captive populations. Further assessment of the utility of these markers over multiple (>3) generations and the incorporation of a larger variety of relationships among individuals (e.g., half‐siblings or cousins) is strongly suggested.
The relationship between genetic variation in CYP2D6 and variable drug response represents a potentially powerful pharmacogenetic tool. However, little is known regarding this relationship in the genetically diverse South African population. The aim was therefore to evaluate the relationship between predicted and measured CYP2D6 phenotype. An XL-PCR+Sequencing approach was used to determine CYP2D6 genotype in 100 healthy volunteers and phenotype was predicted using activity scores. With dextromethorphan as the probe drug, metabolic ratios served as a surrogate measure of in vivo CYP2D6 activity. Three-hour plasma metabolic ratios of dextrorphan/dextromethorphan were measured simultaneously using semi-automated online solid phase extraction coupled with tandem mass spectrometry. Partial adaptation of the activity score system demonstrated a strong association between genotype and phenotype, as illustrated by a kappa value of 0.792, inter-rater discrepancy of 0.051 and sensitivity of 72.7%. Predicted phenotype frequencies using the modified activity score were 1.3% for poor metabolisers (PM), 7.6% for intermediate metabolisers (IM) and 87.3% for extensive metabolisers (EM). Measured phenotype frequencies were 1.3% for PM, 13.9% for IM and 84.8% for EM. Comprehensive CYP2D6 genotyping reliably predicts CYP2D6 activity in this South African cohort and can be utilised as a valuable pharmacogenetic tool.
The most clinically relevant staphylococci in veterinary medicine are those that are coagulase-positive, namely Staphylococcus aureus. During microbiological udder health monitoring (2009)(2010)(2011)(2012)(2013)(2014)(2015)(2016)(2017)(2018), a new S. aureus strain (coagulase-positive and maltose-negative) was discovered as an emerging udder pathogen during routine examinations of South African dairy herds. This study challenged the conventional microbiological diagnosis of staphylococci by comparing its results to those of the MALDI-TOF mass spectrometry and 16S rRNA sequencing. Both of these tests confirmed that the maltose-negative staphylococcus (MNS), identified as Staphylococcus pseudintermedius by conventional microbiology, was S. aureus ST2992. Multi locus sequence typing was performed on 3 of the MNS isolates and indicated that these isolates were of single origin. These strains tested positive for both MALA and MALR genes (control: S. aureus ATCC 25923). Although the α-glucosidase gene was present, it was not expressed phenotypically. The latter may be attributed to the abnormal stop codon identified in the MALA gene sequence of S. aureus ST2992 (GenBank accession number, MN531305). The newly identified MNS has a field behavior different to that of maltose-positive S. aureus, and more similar to the low virulence of non-aureus staphylococci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.