SUMMARYWe establish the wellposedness of the time-independent Navier-Stokes equations with threshold slip boundary conditions in bounded domains. The boundary condition is a generalization of Navier's slip condition and a restricted Coulomb-type friction condition: for wall slip to occur the magnitude of the tangential traction must exceed a prescribed threshold, independent of the normal stress, and where slip occurs the tangential traction is equal to a prescribed, possibly nonlinear, function of the slip velocity. In addition, a Dirichlet condition is imposed on a component of the boundary if the domain is rotationally symmetric.We formulate the boundary-value problem as a variational inequality and then use the Galerkin method and fixed point arguments to prove the existence of a weak solution under suitable regularity assumptions and restrictions on the size of the data. We also prove the uniqueness of the solution and its continuous dependence on the data.
We prove the existence, uniqueness and continuous dependence on the data of weak solutions to boundary-value problems that model steady flows of incompressible Newtonian fluids with wall slip in bounded domains. The flows satisfy the Stokes equations and a nonlinear slip boundary condition: for slip to occur, the magnitude of the tangential traction must exceed a prescribed threshold, which is independent of the normal stress, and where slip occurs the tangential traction is equal to a prescribed, possibly nonlinear, function of the slip velocity. In addition, a Dirichlet condition is imposed on a component of the boundary if the domain is rotationally symmetric. The method of proof is based on a variational inequality formulation of the problem and fixed point arguments which utilize wellposedness results for the Stokes problem with a slip condition of the "friction type".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.