Molecular ''nanowire'' structures composed of the charge transfer complex of a bis-tetrathiafulvalene substituted macrocycle and tetrafluorotetracyanoquinodimethane were constructed on mica substrates by employing the Langmuir-Blodgett technique. The nanowires transferred from a dilute aqueous potassium chloride subphase had typical dimensions of 2.5 nm ؋ 50 nm ؋ 1 m. The nanowires are oriented to specific directions, corresponding to the directions of the potassium-ion array on the mica surface having sixfold symmetry. Such correlation between the nanowires and the substrate surface was also observed when a dilute aqueous rubidium chloride subphase was used. On the other hand, the correlation completely disappeared when the subphase contained divalent cations, indicating that the molecular nanowires orient by recognizing the monocation array on the mica surface. The nanowires formed by the vertical dipping method coexist with the monolayers. Only nanowire structures are, however, observed when we apply the horizontal lifting method. Based on the crystal structure of a related complex, a possible structure of the nanowires is presented. The conductivity of the nanowires was estimated to be of the order of 10 ؊3 S⅐cm ؊1 . The nanowires formed specific (regular) structures such as T-shape junctions, suggesting their use in construction of future molecular nanoscale devices.
Flash photolysis of bis[4.5-di(methylsulfanyl) 1,3-dithiol-2-ylidene]-9,10(-dihydroanthracene (1) in chloroform leads to formation of the transient radical cation species 1.+ which has a diagnostic broad absorption band at lambdamax approximately 650 nm. This band decays to half its original intensity over a period of about 80 micros. Species 1.+ has also been characterised by resonance Raman spectroscopy. In degassed solution 1.+ disproportionates to give the dication 1(2+), whereas in aerated solutions the photodegradation product is the 10-[4,5-di(methylsulfanyl) 1,3-dithiol-2-ylidene]anthracene-9(10 H)one (2). The dication 1(2+) has been characterised by a spectroelectrochemical study [lambdamax (CH2Cl2) = 377, 392, 419, 479 nm] and by an X-ray crystal structure of the salt 1(2-) (ClO4)2, which was obtained by electrocrystallisation. The planar anthracene and 1,3-dithiolium rings in the dication form a dihedral angle of 77.2 degrees; this conformation is strikingly different from the saddle-shaped structure of neutral 1 reported previously.
A number of silicon phthalocyanine bis-esters have been synthesized and characterized, with axial ligands containing one or more tetrathiafulvalene groups. Variations in the substitution positions around a central aromatic "hinge" within the ligands lead to different molecular geometries, and the fluorescence of the macrocyclic core is subsequently quenched to varying degrees by the electron-rich tetrathiafulvalene moiety, the magnitude of this effect being dependent upon both the relative separation of the two units and the flexibility of the linking group. Pc derivative 24, with a highly flexible linker group, and pc derivative 28, with a dendritic axial ligand, have the intensity of the macrocycle emission reduced by 99% and 96%, respectively, relative to a similar silicon pc reference compound lacking the TTF moieties. Molecular modeling studies of a series of such hybrids allow the degree of this fluorescence quenching to be related to the intramolecular spacing. Additionally, the potential for rapid electrochemical switching of the phthalocyanine fluorescence by oxidation of the appended tetrathiafulvalene units is explored.
The synthesis of novel electrochemically amphoteric TTFAQ-sigma-A compounds (TTFAQ = 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene, sigma = saturated spacer, A = polynitrofluorene acceptor) is reported. Their solution redox behavior is characterized by three single-electron reduction and one two-electron oxidation waves. Electrochemical quasireversibility of the TTFAQ(2+) state and a low E(ox) - E(red) gap ( approximately 0.25 V) for 3-(9-dicyanomethylene-4,5,7-trinitrofluorene-2-sulfonyl)-propionic acid 2-[10-(4,5-dimethyl-[1,3]dithiol-2-ylidene)-9,10-dihydroanthracen-9-ylidene]-5-methyl-[1,3]dithiol-4-ylmethyl ester (10) has enabled the electrochemical generation of the hitherto unknown transient D(2+)-sigma-A(.-) state as observed in cyclic voltammetry and time-resolved spectroelectrochemistry. The ground state of compound 10 was shown to be ionic in the solid but is essentially neutral in solution (according to electron paramagnetic resonance). The X-ray structure of an intermolecular 1:2 complex between 2-[2,7-bis(2-hydroxyethoxy)-9,10-bis(4,5-dimethyl-[1,3]dithiol-2-ylidene)-9,10-dihydroanthracene and 2,5,7-trinitro-4-bromo-9-dicyanomethylenefluorene, 14.(17)(2), reveals, for the first time, full electron transfer in a fluorene charge-transfer complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.