This essay outlines the moral dilemma of funding orphan drug research and development. To date, ethical aspects of priority setting for research funding have not been an issue of discussion in the bioethics debate. Conflicting moral obligations of beneficence and distributive justice appear to demand very different levels of funding for orphan drug research. The two types of orphan disease, rare diseases and tropical diseases, however, present very different ethical challenges to questions about allocation of research funds. The dilemma is analysed considering utilitarian and rights based theories of justice and moral obligations of non-abandonment and a professional obligation to advance medical science. The limitations of standard economic evaluation tools and other priority setting tools used to inform health policy decision makers on research funding decisions are outlined.
We present a new approach for non-invasive localization of focal epileptogenic discharges in patients considered for surgical treatment. EEG-triggered functional MR imaging (fMRI) and 3D EEG source localization were combined to map the primary electrical source with high spatial resolution. The method is illustrated by the case of a patient with medically intractable frontal lobe epilepsy. EEG obtained in the MRI system allowed triggering of the fMRI acquisition by the patient's habitual epileptogenic discharges. fMRI revealed multiple areas of signal enhancement. Three-dimensional EEG source localization identified the same active areas and provided evidence of onset in the left frontal lobe. Subsequent electrocorticography from subdural electrodes confirmed spike and seizure onset over this region. This approach, i.e. the combination of EEG-triggered fMRI and 3D EEG source analysis, represents a promising additional tool for presurgical epilepsy evaluation allowing precise non-invasive identification of the epileptic foci.
Nineteen families with autosomal dominant partial epilepsy were analysed clinically and electrophysiologically in detail. Seventy-one patients were studied as well as 33 non-epileptic at-risk family members. We subdivided the families into those with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) (n = 8), familial temporal lobe epilepsy (n = 7) and autosomal dominant partial epilepsy with variable foci (n = 4). However, the application of this nosology to certain families was difficult in cases of non-specific or conflicting clinical and electrophysiological evidence. This was underscored by the observation by depth electrode recordings in one patient that a so-called ADNFLE may originate in an extrafrontal area. The evolution of familial partial epilepsies, which exhibit great intrafamilial variability, is not always benign. The level of pharmacoresistance may reach 30%, close to that seen in classical cryptogenic partial epilepsies. The familial character of a partial epilepsy may be unrecognized in small families as some affected members may have only EEG abnormalities and are clinically asymptomatic, which reflects incomplete clinical penetrance. In view of the recent discoveries of mutations in the alpha4 nicotinic acetylcholine receptor subunit in a few families with ADNFLE, this genetic study focused on genes encoding nicotinic receptor subunits and a candidate region on chromosome 10q. No mutation was detected in the alpha4 and 012 nicotinic acetylcholine receptor subunits. Positive but not significant lod scores were obtained in four families with markers from the candidate region on chromosome 10q.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.