Pulsed laser ablation in liquids (PLAL) is a versatile route to stable colloids without the need for stabilizing agents. The use of suspensions instead of bulk targets further simplifies the experimental set-up and even improves the productivity. However, the utilization of this approach is hindered by limited knowledge about the underlying mechanisms of the nanoparticle formation. We present the synthesis of copper(i) iodide nanoparticles via ns-pulsed laser irradiation of CuI powder suspended in water or ethyl acetate. A thorough study of the nanoparticle size by transmission electron microscopy reveals a log-normal distribution with a mean diameter of 31 nm (±11 nm) in water and 18 nm (±7 nm) in ethyl acetate. The duration of the laser irradiation appears to have only a minor influence on the size distribution. Selected area diffraction and electron energy-loss spectroscopy verify the chemical composition of the generated CuI nanoparticles. While comparable precursors like CuO and Cu3N follow a reductive ablation mechanism, a fragmentation mechanism is found for CuI. With a productivity of 1.7 μg J(-1) this pulsed laser fragmentation in liquids (PLFL) proves to be an efficient route to colloidal CuI nanoparticles.
Pulsed laser ablation in liquids (PLAL) has developed to a convenient and efficient method for the synthesis of colloidal solutions. So far, in most cases, the laser pulse is focused on bulk targets like metal plates. An interesting alternative is the use of suspended μm-sized precursors. This leads to higher production rates and simpler setups. A thorough understanding of the mechanism is essential in order to gain control over the characteristics of the synthesized nanoparticles. Therefore, we investigated the formation of copper colloids by PLAL of CuO, Cu3N, Cu(N3)2, and Cu2C2 powders in organic liquids. Thus, we can compare copper precursors based on elements of the 4th, 5th, and 6th main group. The chemical composition of the resulting nanoparticles is revealed by electron energy loss spectroscopy (EELS). The presented investigations point to a reductive ablation process followed by laser-driven aggregation and coalescence steps instead of a simple fragmentation mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.