A common response by plants to fungal attack is deposition of callose, a (1,3)-b-glucan polymer, in the form of cell wall thickenings called papillae, at site of wall penetration. While it has been generally believed that the papillae provide a structural barrier to slow fungal penetration, this idea has been challenged in recent studies of Arabidopsis (Arabidopsis thaliana), where fungal resistance was found to be independent of callose deposition. To the contrary, we show that callose can strongly support penetration resistance when deposited in elevated amounts at early time points of infection. We generated transgenic Arabidopsis lines that express POWDERY MILDEW RESISTANT4 (PMR4), which encodes a stress-induced callose synthase, under the control of the constitutive 35S promoter. In these lines, we detected callose synthase activity that was four times higher than that in wild-type plants 6 h post inoculation with the virulent powdery mildew Golovinomyces cichoracearum. The callose synthase activity was correlated with enlarged callose deposits and the focal accumulation of green fluorescent protein-tagged PMR4 at sites of attempted fungal penetration. We observed similar results from infection studies with the nonadapted powdery mildew Blumeria graminis f. sp. hordei. Haustoria formation was prevented in resistant transgenic lines during both types of powdery mildew infection, and neither the salicylic acid-dependent nor jasmonate-dependent pathways were induced. We present a schematic model that highlights the differences in callose deposition between the resistant transgenic lines and the susceptible wild-type plants during compatible and incompatible interactions between Arabidopsis and powdery mildew.Land plants are exposed to a wide range of potential pathogens and, accordingly, have evolved a variety of strategies that facilitate an early and rapid recognition of pathogens and the mobilization of biochemical and structural defenses. As a result, successful infection of plants by pathogens is the exception rather than the rule (
SummaryFusarium graminearum is the causal agent of the Fusarium head blight (FHB) and a destructive pathogen of cereals accounting for high grain yield losses especially on wheat and maize. Like other fungal pathogens, F. graminearum secretes various extracellular enzymes, which are hypothesized to be involved in host infection. Extracellular lipolytic activity of F. graminearum was strongly induced in culture by wheat germ oil; this allowed us to isolate, clone, and characterize a gene (FGL1) encoding a secreted lipase. Expression analysis indicated that FGL1 is induced by lipid-containing substrates and repressed by glucose. In planta, FGL1 transcription was detected 1 day post-infection of wheat spikes. The function of the FGL1 gene product was verified by specifically demonstrating lipase activity after expression in a heterologous host. Ebelactone B, a known lipase inhibitor, repressed the lipolytic activity of the enzyme. Disease severity was strongly reduced when wild-type conidia were supplemented with ebelactone B. Transformation-mediated disruption of FGL1 led to reduced extracellular lipolytic activity in culture and to reduced virulence to both wheat and maize.
Plants are exposed to a wide range of potential pathogens, which derive from diverse phyla. Therefore, plants have developed successful defense mechanisms during co-evolution with different pathogens. Besides many specialized defense mechanisms, the plant cell wall represents a first line of defense. It is actively reinforced through the deposition of cell wall appositions, so-called papillae, at sites of interaction with intruding microbial pathogens. The papilla is a complex structure that is formed between the plasma membrane and the inside of the plant cell wall. Even though the specific biochemical composition of papillae can vary between different plant species, some classes of compounds are commonly found which include phenolics, reactive oxygen species, cell wall proteins, and cell wall polymers. Among these polymers, the (1,3)-β-glucan callose is one of the most abundant and ubiquitous components. Whereas the function of most compounds could be directly linked with cell wall reinforcement or an anti-microbial effect, the role of callose has remained unclear. An evaluation of recent studies revealed that the timing of the different papilla-forming transport processes is a key factor for successful plant defense.
Among the different sites of callose biosynthesis within the plant, particular attention has been focused on the formation of callose in response to pathogen attack. Here, callose is deposited between the plasma membrane and the cell wall to act as a physical barrier to stop or slow invading pathogens. Arabidopsis (Arabidopsis thaliana) is one of the best-studied models not only for general plant defence responses but also for the regulation of pathogen-induced callose biosynthesis. Callose synthase GSL5 (GLUCAN SYNTHASE-LIKE5) has been shown to be responsible for stress-induced callose deposition. Within the last decade of research into stress-induced callose, growing evidence has been found that the timing of callose deposition in the multilayered system of plant defence responses could be the key parameter for optimal effectiveness. This timing seems to be achieved through co-ordinated transport and formation of the callose synthase complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.