We investigate the phase structure of QCD at finite temperature and light-quark chemical potential. We improve upon earlier results for N_f=2+1 dynamical quark flavors and investigate the effects of charm quarks in an extension to N_f=2+1+1. We determine the quark condensate and the Polyakov loop potential using solutions of a coupled set of (truncated) Dyson-Schwinger equations for the quark and gluon propagators of Landau gauge QCD. At zero chemical potential we find excellent agreement with results from lattice-QCD. With input fixed from physical observables we find only a very small influence of the charm quark on the resulting phase diagram at finite chemical potential. We discuss the location of the emerging critical end-point and compare with expectations from lattice gauge theory.Comment: 10 pages, 9 figures, v2: typos corrected, minor changes, version accepted by PR
The location of the critical end point of QCD has been determined in previous studies of N f = 2+1 and N f = 2 + 1 + 1 dynamical quark flavors using a (truncated) set of Dyson-Schwinger equations for the quark and gluon propagators of Landau-gauge QCD. A source for systematic errors in these calculations has been the omission of terms in the quark-gluon interaction that can be parametrized in terms of baryonic degrees of freedom. These have a potentially large dependence on chemical potential and therefore may affect the location of the critical end point. In this exploratory study we estimate the effects of these contributions, both in the vacuum and at finite temperature and chemical potential. We find only a small influence of baryonic contributions on the location of the critical end point. We estimate the robustness of this result by parameterizing further dependencies on chemical potential.
We investigate the practical predictability limits of deep convection in a state-of-the-art, high-resolution, limited-area ensemble prediction system. A combination of sophisticated predictability measures, namely, believable and decorrelation scale, are applied to determine the predictable scales of short-term forecasts in a hierarchy of model configurations. First, we consider an idealized perfect model setup that includes both small-scale and synoptic-scale perturbations. We find increased predictability in the presence of orography and a strongly beneficial impact of radar data assimilation, which extends the forecast horizon by up to 6 h. Second, we examine realistic COSMO-KENDA simulations, including assimilation of radar and conventional data and a representation of model errors, for a convectively active two-week summer period over Germany. The results confirm increased predictability in orographic regions. We find that both latent heat nudging and ensemble Kalman filter assimilation of radar data lead to increased forecast skill, but the impact is smaller than in the idealized experiments. This highlights the need to assimilate spatially and temporally dense data, but also indicates room for further improvement. Finally, the examination of operational COSMO-DE-EPS ensemble forecasts for three summer periods confirms the beneficial impact of orography in a statistical sense and also reveals increased predictability in weather regimes controlled by synoptic forcing, as defined by the convective adjustment time scale.
We report results on the quark spectral function in the Landau gauge at finite temperature determined from its Dyson-Schwinger equation. Compared to earlier quenched results [1] this study encompasses unquenched N f = 2 + 1 fermion flavors in the medium. For the reconstruction of real-time spectra we deploy a recent Bayesian approach (BR method) [2] and develop a new prior in order to better assess the inherent systematic uncertainties. We identify the quark quasi-particle spectrum and analyze the (non-)appearance of zero modes at or around the pseudo-critical temperature. In both, the fully unquenched system and a simpler truncation using a model for the gluon propagator we observe a characteristic three-peak structure at zero three-momentum. The temperature dependence of these structures in case of the gluon propagator model is different than observed in previous studies. For the back-coupled and unquenched case we find interesting modifications at and around the pseudo-critical transition temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.