We introduce far-field fluorescence nanoscopy with ordinary fluorophores based on switching the majority of them to a metastable dark state, such as the triplet, and calculating the position of those left or those that spontaneously returned to the ground state. Continuous widefield illumination by a single laser and a continuously operating camera yielded dual-color images of rhodamine- and fluorescent protein-labeled (living) samples, proving a simple yet powerful super-resolution approach.
Mammalian mtDNA is packaged in DNA-protein complexes denoted mitochondrial nucleoids. The organization of the nucleoid is a very fundamental question in mitochondrial biology and will determine tissue segregation and transmission of mtDNA. We have used a combination of stimulated emission depletion microscopy, enabling a resolution well below the diffraction barrier, and molecular biology to study nucleoids in a panel of mammalian tissue culture cells. We report that the nucleoids labeled with antibodies against DNA, mitochondrial transcription factor A (TFAM), or incorporated BrdU, have a defined, uniform mean size of approximately 100 nm in mammals. Interestingly, the nucleoid frequently contains only a single copy of mtDNA (average approximately 1.4 mtDNA molecules per nucleoid). Furthermore, we show by molecular modeling and volume calculations that TFAM is a main constituent of the nucleoid, besides mtDNA. These fundamental insights into the organization of mtDNA have broad implications for understanding mitochondrial dysfunction in disease and aging
The resolution of any linear imaging system is given by its point spread function (PSF) that quantifies the blur of an object point in the image. The sharper the PSF, the better the resolution is. In standard fluorescence microscopy, however, diffraction dictates a PSF with a cigar-shaped main maximum, called the focal spot, which extends over at least half the wavelength of light (lambda = 400-700 nm) in the focal plane and >lambda along the optical axis (z). Although concepts have been developed to sharpen the focal spot both laterally and axially, none of them has reached their ultimate goal: a spherical spot that can be arbitrarily downscaled in size. Here we introduce a fluorescence microscope that creates nearly spherical focal spots of 40-45 nm (lambda/16) in diameter. Fully relying on focused light, this lens-based fluorescence nanoscope unravels the interior of cells noninvasively, uniquely dissecting their sub-lambda-sized organelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.