We study local bifurcations of periodic solutions to time-periodic (systems of) integrodifference equations over compact habitats. Such infinitedimensional discrete dynamical systems arise in theoretical ecology as models to describe the spatial dispersal of species having nonoverlapping generations. Our explicit criteria allow us to identify branchings of fold-and crossing curvetype, which include the classical transcritical-, pitchfork-and flip-scenario as special cases. Indeed, not only tools to detect qualitative changes in models from e.g. spatial ecology and related simulations are provided, but these critical transitions are also classified. In addition, the bifurcation behavior of various time-periodic integrodifference equations is investigated and illustrated. This requires a combination of analytical methods and numerical tools based on Nyström discretization of the integral operators involved.
We provide a convenient Neimark-Sacker bifurcation result for time-periodic difference equations in arbitrary Banach spaces. It ensures the bifurcation of "discrete invariant tori" caused by a pair of complex-conjugated Floquet multipliers crossing the complex unit circle. This criterion is made explicit for integrodifference equations, which are infinite-dimensional discrete dynamical systems popular in theoretical ecology, and are used to describe the temporal evolution and spatial dispersal of populations with nonoverlapping generations. As an application, we combine analytical and numerical tools for a detailed bifurcation analysis of a spatial predator-prey model. Since such realistic models can frequently only be studied numerically, we formulate our assumptions in such a fashion as to allow for numerically stable verification.
We introduce and analyze a method of learning-informed parameter identification for partial differential equations (PDEs) in an all-at-once framework. The underlying PDE model is formulated in a rather general setting with three unknowns: physical parameter, state and nonlinearity. Inspired by advances in machine learning, we approximate the nonlinearity via a neural network, whose parameters are learned from measurement data. The later is assumed to be given as noisy observations of the unknown state, and both the state and the physical parameters are identified simultaneously with the parameters of the neural network.Moreover, diverging from the classical approach, the proposed all-at-once setting avoids constructing the parameter-to-state map by explicitly handling the state as additional variable. The practical feasibility of the proposed method is confirmed with experiments using two different algorithmic settings: A function-space algorithm based on analytic adjoints as well as a purely discretized setting using standard machine learning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.