For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ~1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
Sterically pressured mid- to high-valent uranium complexes with an aryloxide substituted triazacyclononane ligand scaffold, [(((R)ArO)3tacn)(3-)], were studied for carbon dioxide activation and transformation chemistry. The high valent uranium(V) imido species [(((R)ArO)3tacn)U(NR)] (R = (t)Bu, R' = 2,4,6-trimethylphenyl (2-(t)Bu); R = Ad, R' = 2,4,6-trimethylphenyl (2-Ad); R = (t)Bu, R' = phenyl (3-(t)Bu)) were synthesized and spectroscopically characterized. X-ray crystallography of the tert-butyl mesityl imido derivative, 2-(t)Bu , reveals coordination of a bent imido fragment with a relatively long U-N bond distance of 2.05 A. The mesityl imido complexes reacted with carbon dioxide, readily extruding free isocyanate to produce uranium(V) terminal oxo species, [(((R)ArO)3tacn)U(O)] (R = (t)Bu (4-(t)Bu), Ad (4-Ad)), presumably through multiple bond metathesis via a uranium(V) carbimate intermediate. Using the smaller phenyl imido fragment in 3-(t) Bu slowed isocyanate loss, allowing the uranium(V) carbimate intermediate to undergo a second metathesis reaction, ultimately producing the diphenyl ureate derivative, [(((tBu)ArO)3tacn)U(NPh2)CO] (5-(t)Bu). Single crystal X-ray diffraction studies were carried out on both uranium(V) terminal oxo complexes and revealed short U-O bonds (1.85 A) indicative of a formal UO triple bond. The electronic structure of the oxo U(V) complexes was investigated by electronic absorption and EPR spectroscopies as well as SQUID magnetization and DFT studies, which indicated that their electronic properties are highly unusual. To obtain insight into the reactivity of CO2 with U-N bonds, the reaction of the uranium(IV) amide species, [(((R)ArO)3tacn)U(NHMes)] (R = (t)Bu (6-(t)Bu), Ad (6-Ad) with carbon dioxide was investigated. These reactions produced the uranium(IV) carbamate complexes, [(((R)ArO)3tacn)U(CO2NHMes)] (R = (t)Bu (7-(t)Bu), Ad (7-Ad)), resulting from insertion of carbon dioxide into U-N(amide) bonds. The molecular structures of the synthesized uranium carbamate complexes highlight the different reactivities due to the steric pressure introduced by the alkyl derivatized tris(aryloxide) triazacyclononane ligand. The sterically open tert-butyl derivative creates a monodentate eta(1)-O bound carbamate species, while the sterically more bulky adamantyl-substituted compound forces a bidentate kappa(2)-O,O coordination mode of the carbamate ligand.
High on nitride: Discrete iron nitride complexes stabilized by N‐anchored tris(carbene) ligands have been synthesized (see picture). These high‐valent FeIVN complexes are stable at room temperature, which allows their full spectroscopic and—for the first time—crystallographic characterization.
The reaction of [((t-Bu)ArO) 3tacn)U (III)] ( 1) with 4,4'-di- tert-butylbenzophenone affords a unique isolable U(IV) ketyl radical species [((t-Bu)ArO) 3tacn)U (IV)(OC* (t-Bu)Ph 2)] (2) supported by XRD data, magnetization measurements, and DFT calculations. Isolation and full characterization of the corresponding diphenyl methoxide complex [((t-Bu)ArO) 3tacn)U (IV)(OCH ( t-Bu )Ph 2)] (3) is also presented. The one-electron reduction of benzophenone by [((Ad)ArO) 3tacn)U (III)] (4) leads to a purple U(IV) ketyl radical intermediate [((Ad)ArO) 3tacn)U (IV)(OC*Ph 2)] (5). This species is highly reactive, and attempts at isolation were unsuccessful and resulted in methoxide complex [((Ad)ArO) 3tacn)U (IV)(OCHPh 2)] (6) from H abstraction and dinuclear para-coupled complex [((Ad)ArO) 3tacn)U (IV)(OCPhPhCPh 2O)U (IV)((Ad)ArO) 3tacn)] (7).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.