Silks are a class of proteinaceous materials produced by arthropods for various purposes. Spider dragline silk is known for its outstanding mechanical properties, and it shows high biocompatibility, good biodegradability, and a lack of immunogenicity and allergenicity. The silk produced by the mulberry silkworm B. mori has been used as a textile fiber and in medical devices for a long time. Here, recent progress in the processing of different silk materials into highly tailored isotropic and anisotropic coatings for biomedical applications such as tissue engineering, cell adhesion, and implant coatings as well as for optics and biosensors is reviewed.
The performance of biomaterials largely depends on the materials biocompatibility, which is directly related to unwanted side effects like foreign body responses and inflammation, and the potential of interaction of cells with its surface, for example, cell adhesion. In the distinct application of catheters, low or even no cell adhesion is eligible. To influence the properties of existing and commonly used biomaterials and to further increase their biocompatibility, a coating with a recombinantly produced spider silk protein as outer layer was applied on three selected catheter polymers (polyurethane, polytetrafluoroethylene, silicone) and evaluated based on cell adhesion. The tested cell types, HaCaT keratinocytes (epidermal cells), B50 neuronal cells, C2C12 myoblasts (muscle cells) and BALB/3T3 fibroblasts (connective tissue), exhibited low or no adhesion on the silk-coated materials. In combination with the lack of toxicity, the good biocompatibility, and the low body response, it could be shown that silk coatings have a high potential as a biomedical coating material, e.g., for catheters.
Improving biomaterials by engineering application-specific and adjustable properties is of increasing interest. Most of the commonly available materials fulfill the mechanical and physical requirements of relevant biomedical applications, but they lack biological functionality, including biocompatibility and prevention of microbial infestation. Thus, research has focused on customizable, application-specific, and modifiable surface coatings to cope with the limitations of existing biomaterials. In the case of adjustable degradation and configurable interaction with body fluids and cells, these coatings enlarge the applicability of the underlying biomaterials. Silks are interesting coating materials, e.g., for implants, since they exhibit excellent biocompatibility and mechanical properties. Herein, we present putative implant coatings made of five engineered recombinant spider silk proteins derived from the European garden spider Araneus diadematus fibroins (ADF), differing in amino acid sequence and charge. We analyzed the influence of the underlying amino acid composition on wetting behavior, blood compatibility, biodegradability, serum protein adsorption, and cell adhesion. The outcome of the comparison indicates that spider silk coatings can be engineered for explicit biomedical applications.
β-Sheets in natural spider dragline silk proteins are typically formed by polyalanine (A n ) as well as alanine-glycine (AG) and GGA sequences flanking these A n regions. The hydrophobic β-sheet-rich regions are embedded in a hydrophilic amorphous matrix, and this phenomenon can be reflected as microphase separation, similar to that of block copolymers. Microphase separation occurs not only in fibers but also in cast spider silk films. Micellar-like structures form within the bulk of the film, while substrate surface as well as the film/air interface trigger explicit secondary structure formation in these layers. So far, only limited information is available concerning the mechanism of film assembly and microphase separation of spider silk proteins on surfaces. In this work, self-assembly and folding of eADF4(C16) was analyzed on steady silicon surfaces, dependent on the spider silk layer number and thickness. Based on the results, a model for structural features of spider silk films is proposed, combining block copolymer microphase separation theory with folding properties of recombinant eADF4(C16).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.